先说一下, 期望的英文是expect, 不是respect
为怀来等地区用户提供了全套网页设计制作服务,及怀来网站建设行业解决方案。主营业务为成都做网站、网站建设、怀来网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
然后上代码:
def compare(o, e, n):
if len(o)!=len(e) or len(o)!=len(n):
exit()
diff = []
for i in range(len(o)):
if(o[i]!=e[i]):
diff.append(i)
if diff:
print "%-15s%-15s" %("OutputValue", "ExpectedValue")
for i in diff:
print "%5s= %-10d%5s= %-10d" %(n[i], o[i], n[i], e[i])
离散型很简单,一个一个列出来就可以了
连续型的话,也不难,看具体的吧
比如两个连续型X、Y
现在条件可以任意给,比如知道X、Y的密度函数,那直接用xy乘以联合密度函数的定积分就可以了。
正态分布:
若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)
其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布
判断方法有画图/k-s检验