python坐标轴函数,python怎么绘制坐标轴

Python-matplotlib绘制带箭头x-y坐标轴图形

在Python的数据可视化库中,采用matplotlib绘制相关图形时,若不加任何设定,一般的x-y坐标轴是不带箭头且是一个封闭的矩形。我们以Sigmoid函数的绘制,给大家展示一下。

成都创新互联于2013年开始,公司以网站制作、成都网站设计、系统开发、网络推广、文化传媒、企业宣传、平面广告设计等为主要业务,适用行业近百种。服务企业客户上千余家,涉及国内多个省份客户。拥有多年网站建设开发经验。为企业提供专业的网站建设、创意设计、宣传推广等服务。 通过专业的设计、独特的风格,为不同客户提供各种风格的特色服务。

matplotlib的辅助工具,包含一系列对坐标轴设置的框架。其中的axisartist包就用来设置坐标轴的类型。

1.创建画布并引入axisartist工具。

2.绘制带箭头的x-y坐标轴

我们先把原始的如上图的所有坐标轴隐藏,即长方形的四个边。

然后用ax.new_floating_axis在绘图区添加坐标轴x、y,这里的ax.new_floating_axis(0,0),第一个0代表平行直线,第二个0代表该直线经过0点。同样,ax.axis["y"] = ax.new_floating_axis(1,0),则代表竖直曲线且经过0点。

再次,x.axis["x"].set_axisline_style("-", size = 1.0)表示给x轴加上箭头,"-"表示是空箭头,size = 1.0表示箭头大小。ax.axis["y"].set_axisline_style("-|", size = 1.0)中"-|"则是实心箭头。

最后,设置x、y轴上刻度显示方向,对于x轴是刻度标签在上面还是下面,y轴则是刻度标签在左边还是右边。

3.在带箭头的x-y坐标轴背景下,绘制函数图像

tist坐标轴工具——将原始坐标轴均隐藏掉——添加新的基于原点的x与y轴——为新坐标轴加入箭头,并设置刻度显示方式——加入图形。

python之pyplot

1、 定义x和y,画图展示,保存图片

其中dpi参数指定图像的分辨率为120

2、 优化绘图线条风格

线条颜色color

线条标记marker

线条风格linestyle

3、 坐标轴的控制

坐标轴范围和标题

坐标图上标记

坐标间隔设定

函数plt.xticks()和plt.xticks()用来实现对x轴和y轴坐标间隔(也就是轴记号)的设定。用法上,函数的输入是两个列表,第一个表示取值,第二个表示标记。当然如果你的标记就是取值本身,则第二个列表可以忽略

多图与子图

figure() 函数可以帮助我们同时处理生成多个图,而subplot()函数则用来实现,在一个大图中,出现多个小的子图。需要注意的是, figure() 中的参数为图片序号,一般是按序增加的,这里面还涉及一个当前图的概念,其中 subplot() 的参数有3个,分别为行数、列数、以及子图序号。比如 subplot(1,2,1) 表示这是一个1行,2列布局的图(两个子图,在同一行,分居左右),其中,当前处理的子图是第一个图(也就是左图)。

这样,我们就用一个脚本画了两张图fig.1和fig.2。其中,fig.1包含了分居左右的两个子图,分别是y1和y3的曲线;fig.2是一张整图,画的是y2曲线。

如果想要某个子图占据整行或者整列,可以采用下面

第三个图,实际上相当于将前面的两个小的子图看作是一个整图

Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

import matplotlib.pyplot as plt

x_values=list(range(11))   #x轴的数字是0到10这11个整数

y_values=[x**2forx inx_values]   #y轴的数字是x轴数字的平方

plt.plot(x_values,y_values,c='green')  #用plot函数绘制折线图,线条颜色设置为绿色

plt.title('Squares',fontsize=24)   #设置图表标题和标题字号

plt.tick_params(axis='both',which='major',labelsize=14) #设置刻度的字号

plt.xlabel('Numbers',fontsize=14)  #设置x轴标签及其字号

plt.ylabel('Squares',fontsize=14)  #设置y轴标签及其字号

plt.show()

import matplotlib.pyplot as plt

from matplotlib.pyplot import MultipleLocator

#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔

x_values=list(range(11))

y_values=[x**2forx inx_values]

plt.plot(x_values,y_values,c='green')

plt.title('Squares',fontsize=24)

plt.tick_params(axis='both',which='major',labelsize=14)

plt.xlabel('Numbers',fontsize=14)

plt.ylabel('Squares',fontsize=14)

x_major_locator=MultipleLocator(1) #把x轴的刻度间隔设置为1,并存在变量里

y_major_locator=MultipleLocator(10) #把y轴的刻度间隔设置为10,并存在变量里

ax=plt.gca() #ax为两条坐标轴的实例

ax.xaxis.set_major_locator(x_major_locator) #把x轴的主刻度设置为1的倍数

ax.yaxis.set_major_locator(y_major_locator) #把y轴的主刻度设置为10的倍数

plt.xlim(-0.5,11)  #把x轴的刻度范围设置为-0.5到11,因为0.5不满一个刻度间隔,所以数字不会显示出来,但是能看到一点空白

plt.ylim(-5,110) #把y轴的刻度范围设置为-5到110,同理,-5不会标出来,但是能看到一点空白

plt.show()

python中怎么让图所有坐标轴都有刻度?

plt.tick_params(top='on', right='on', which='both') # 显示上侧和右侧的刻度

plt.rcParams['xtick.direction'] = 'in' #将x轴的刻度线方向设置向内

plt.rcParams['ytick.direction'] = 'in' #将y轴的刻度方向设置向内

(PS:如果第一次运行上面的两个命令坐标轴没有朝内的话,关闭图像,再运行一次就可以达到效果了。)

python输出折线图中点的坐标值怎么算

首先创建一个包含x值的列表,其中包含数字1~1000。接下来是一个生成y值的列表解析,它遍历x值(for x in x_values),计算其平方值,并将结果存储到列表 y_values中。然后,将输入列表和输出列表传递给scatter()。使用函数axis()指定了每个坐标轴的取值范围。函数axis()要求提供四个值:x和y坐标轴的最小值和最大值。在这里,我们将x坐标轴的取值范围设置为0-1100,将y坐标轴的取值范围设置为0-1100000。

用Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

转自 跳转链接

 一、用默认设置绘制折线图

import matplotlib.pyplot as plt

x_values=list(range(11))

#x轴的数字是0到10这11个整数

y_values=[x**2 for x in x_values]

#y轴的数字是x轴数字的平方

plt.plot(x_values,y_values,c='green')

#用plot函数绘制折线图,线条颜色设置为绿色

plt.title('Squares',fontsize=24)

#设置图表标题和标题字号

plt.tick_params(axis='both',which='major',labelsize=14)

#设置刻度的字号

plt.xlabel('Numbers',fontsize=14)

#设置x轴标签及其字号

plt.ylabel('Squares',fontsize=14)

#设置y轴标签及其字号

plt.show()

#显示图表

制作出图表

我们希望x轴的刻度是0,1,2,3,4……,y轴的刻度是0,10,20,30……,并且希望两个坐标轴的范围都能再大一点,所以我们需要手动设置。

二、手动设置坐标轴刻度间隔以及刻度范围

import matplotlib.pyplot as plt

from matplotlib.pyplot import MultipleLocator

#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔

x_values=list(range(11))

y_values=[x**2 for x in x_values]

plt.plot(x_values,y_values,c='green')

plt.title('Squares',fontsize=24)

plt.tick_params(axis='both',which='major',labelsize=14)

plt.xlabel('Numbers',fontsize=14)

plt.ylabel('Squares',fontsize=14)

x_major_locator=MultipleLocator(1)

#把x轴的刻度间隔设置为1,并存在变量里

y_major_locator=MultipleLocator(10)

#把y轴的刻度间隔设置为10,并存在变量里

ax=plt.gca()

#ax为两条坐标轴的实例

ax.xaxis.set_major_locator(x_major_locator)

#把x轴的主刻度设置为1的倍数

ax.yaxis.set_major_locator(y_major_locator)

#把y轴的主刻度设置为10的倍数

plt.xlim(-0.5,11)

#把x轴的刻度范围设置为-0.5到11,因为0.5不满一个刻度间隔,所以数字不会显示出来,但是能看到一点空白

plt.ylim(-5,110)

#把y轴的刻度范围设置为-5到110,同理,-5不会标出来,但是能看到一点空白

plt.show()

绘制结果


分享文章:python坐标轴函数,python怎么绘制坐标轴
转载来于:http://bzwzjz.com/article/phesgs.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都企业网站制作 网站制作公司 网站建设开发 企业网站设计 成都网站建设 成都网站建设 企业网站建设 成都商城网站制作 成都网站建设 成都网站制作 手机网站制作 成都网站建设推广 宜宾网站设计 成都网站设计 企业网站建设公司 成都品牌网站设计 成都网站建设公司 重庆企业网站建设 定制网站设计 成都网站制作 成都网站设计 定制网站设计