leetcode怎么解决K个不同整数的子数组

这篇文章主要介绍“leetcode怎么解决K 个不同整数的子数组”,在日常操作中,相信很多人在leetcode怎么解决K 个不同整数的子数组问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”leetcode怎么解决K 个不同整数的子数组”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于做网站、成都网站建设、延安网络推广、成都小程序开发、延安网络营销、延安企业策划、延安品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供延安建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com

一、题目内容

给定一个正整数数组 A,如果 A 的某个子数组中不同整数的个数恰好为 K,则称 A 的这个连续、不一定独立的子数组为好子数组。

(例如,[1,2,3,1,2] 中有 3 个不同的整数:1,2,以及 3。)

返回 A 中好子数组的数目。

示例 1:

输入:A = [1,2,1,2,3], K = 2
输出:7
解释:恰好由 2 个不同整数组成的子数组:[1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2].

示例 2:

输入:A = [1,2,1,3,4], K = 3
输出:3
解释:恰好由 3 个不同整数组成的子数组:[1,2,1,3], [2,1,3], [1,3,4].

提示:

1 <= A.length <= 20000
1 <= A[i] <= A.length
1 <= K <= A.length

二、解题思路

最多存在 K 个不同整数的子区间的个数与恰好存在K个不同整数的子区间的个数的差恰好等于最多存在 K - 1个不同整数的子区间的个数。

因此,最多存在 K 个不同整数的子区间的个数 - 最多存在 K - 1个不同整数的子区间的个数 = 恰好存在K个不同整数的子区间的个数。

三、代码

class Solution:
    def subarraysWithKDistinct(self, A: list, K: int) -> int:
        return self._subarrayWithDistinct(A, K) - self._subarrayWithDistinct(A, K - 1)

    # 计算最多为K的子数组长度
    def _subarrayWithDistinct(self, A, K):
        freq_num = [0 for _ in range(len(A) + 1)]

        left, right = 0, 0
        count = 0
        res = 0

        while right < len(A):
            if freq_num[A[right]] == 0:
                count += 1
            freq_num[A[right]] += 1
            right += 1

            while count > K:
                freq_num[A[left]] -= 1
                if freq_num[A[left]] == 0:
                    count -= 1
                left += 1
            # 长度贡献
            res += right - left
        return res


if __name__ == '__main__':
    s = Solution()
    A = [1, 2, 1, 2, 3]
    K = 2
    ans = s.subarraysWithKDistinct(A, K)
    print(ans)

到此,关于“leetcode怎么解决K 个不同整数的子数组”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


本文标题:leetcode怎么解决K个不同整数的子数组
网站URL:http://bzwzjz.com/article/pdegeh.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 网站制作 重庆网站制作 营销型网站建设 手机网站建设 重庆网站设计 响应式网站设计 网站设计制作报价 成都网站建设 成都网站建设公司 网站建设方案 营销网站建设 移动网站建设 营销型网站建设 成都网站制作 成都网站建设公司 商城网站建设 定制网站制作 成都网站设计 成都网站建设公司 成都h5网站建设 营销型网站建设 宜宾网站设计