Python中怎么预测缺失值

这篇文章给大家介绍Python中怎么预测缺失值,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

成都创新互联长期为超过千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为修文企业提供专业的网站建设、成都网站设计修文网站改版等技术服务。拥有10余年丰富建站经验和众多成功案例,为您定制开发。

import pandas as pd
df = pd.read_csv("winemag-data-130k-v2.csv")

接下来,让我们输出前五行数据:

print(df.head())

Python中怎么预测缺失值

Python中怎么预测缺失值

让我们从这些数据中随机抽取500条记录。这将有助于加快模型训练和测试,尽管读者可以很容易地对其进行修改:

import pandas as pd
df = pd.read_csv("winemag-data-130k-v2.csv").sample(n=500https://my.oschina.net/u/4253699/blog/, random_state = 42)

现在,让我们打印与数据对应的信息,这将使我们了解哪些列缺少值:

print(df.info())

Python中怎么预测缺失值

有几个列的非空值小于500,这与缺少的值相对应。首先,让我们考虑建立一个模型,用“points”来估算缺失的“price”值。首先,让我们打印“price”和“points”之间的相关性:

print("Correlation: "https://my.oschina.net/u/4253699/blog/, df['points'].corr(df['price']))

Python中怎么预测缺失值

我们看到了一个微弱的正相关。让我们建立一个线性回归模型,用“points”来预测“price”。首先,让我们从“scikit learn”导入“LinearRegresssion”模块:

from sklearn.linear_model import LinearRegression

现在,让我们为训练和测试拆分数据。我们希望能够预测缺失值,但我们应该使用真实值“price”来验证我们的预测。让我们通过只选择正价格值来筛选缺少的值:

import numpy as np 
df_filter = df[df['price'] > 0].copy()

我们还可以初始化用于存储预测和实际值的列表:

y_pred = []
y_true = []

我们将使用K-fold交叉验证来验证我们的模型。让我们从“scikit learn”导入“KFolds”模块。我们将使用10折来验证我们的模型:

from sklearn.model_selection import KFold
kf = KFold(n_splits=10https://my.oschina.net/u/4253699/blog/, random_state = 42)
for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter):
    df_test = df_filter.iloc[test_index]
    df_train = df_filter.iloc[train_index]

我们现在可以定义我们的输入和输出:

for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter):
    ...
    X_train = np.array(df_train['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)     
    y_train = np.array(df_train['price']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)
    X_test = np.array(df_test['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)  
    y_test = np.array(df_test['price']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)

并拟合我们的线性回归模型:

for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter):
    ...
    model = LinearRegression()
    model.fit(X_trainhttps://my.oschina.net/u/4253699/blog/, y_train)

现在让我们生成并存储我们的预测:

for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter):
    ...
    y_pred.append(model.predict(X_test)[0])
    y_true.append(y_test[0])

现在让我们评估一下模型的性能。让我们用均方误差来评估模型的性能:

print("Mean Square Error: "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_truehttps://my.oschina.net/u/4253699/blog/, y_pred))

Python中怎么预测缺失值

并不太好。我们可以通过训练平均价格加上一个标准差来改善这一点:

df_filter = df[df['price'] <= df['price'].mean() + df['price'].std() ].copy()
...
print("Mean Square Error: "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_truehttps://my.oschina.net/u/4253699/blog/, y_pred))

Python中怎么预测缺失值

虽然这大大提高了性能,但其代价是无法准确估算葡萄酒的price。与使用单一特征的回归模型预测价格不同,我们可以使用树基模型,例如随机森林模型,它可以处理类别和数值变量。

让我们建立一个随机森林回归模型,使用“country”、“province”、“variety”、“winery”和“points”来预测葡萄酒的“price”。首先,让我们将分类变量转换为可由随机森林模型处理的分类代码:

df['country_cat'] = df['country'].astype('category')
df['country_cat'] = df['country_cat'].cat.codes

df['province_cat'] = df['province'].astype('category')
df['province_cat'] = df['province_cat'].cat.codes

df['winery_cat'] = df['winery'].astype('category')
df['winery_cat'] = df['winery_cat'].cat.codes

df['variety_cat'] = df['variety'].astype('category')
df['variety_cat'] = df['variety_cat'].cat.codes

让我们将随机样本大小增加到5000:

df = pd.read_csv("winemag-data-130k-v2.csv").sample(n=5000https://my.oschina.net/u/4253699/blog/, random_state = 42)

接下来,让我们从scikit learn导入随机森林回归器模块。我们还可以定义用于训练模型的特征列表:

from sklearn.ensemble import RandomForestRegressor
features = ['points'https://my.oschina.net/u/4253699/blog/, 'country_cat'https://my.oschina.net/u/4253699/blog/, 'province_cat'https://my.oschina.net/u/4253699/blog/, 'winery_cat'https://my.oschina.net/u/4253699/blog/, 'variety_cat']

让我们用一个随机森林来训练我们的模型,它有1000个估计量,最大深度为1000。然后,让我们生成预测并将其附加到新列表中:

for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter):
    df_test = df_filter.iloc[test_index]
    df_train = df_filter.iloc[train_index]
    
    X_train = np.array(df_train[features])
    y_train = np.array(df_train['price'])
    X_test = np.array(df_test[features])
    y_test = np.array(df_test['price'])
    model = RandomForestRegressor(n_estimators = 1000https://my.oschina.net/u/4253699/blog/, max_depth = 1000https://my.oschina.net/u/4253699/blog/, random_state = 42)
    model.fit(X_trainhttps://my.oschina.net/u/4253699/blog/, y_train)
    
    y_pred_rf.append(model.predict(X_test)[0])
    y_true_rf.append(y_test[0])

最后,让我们评估随机森林和线性回归模型的均方误差:

print("Mean Square Error (Linear Regression): "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_truehttps://my.oschina.net/u/4253699/blog/, y_pred))
print("Mean Square Error (Random Forest): "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_pred_rfhttps://my.oschina.net/u/4253699/blog/, y_true_rf))

Python中怎么预测缺失值

我们看到随机森林模型具有优越的性能。现在,让我们使用我们的模型预测缺失的价格值,并显示price预测:

df_missing = df[df['price'].isnull()].copy()

X_test_lr = np.array(df_missing['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)
X_test_rf = np.array(df_missing[features])

X_train_lr = np.array(df_filter['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)    
y_train_lr = np.array(df_filter['price']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)

X_train_rf = np.array(df_filter[features])
y_train_rf = np.array(df_filter['price'])

model_lr = LinearRegression()
model_lr.fit(X_train_lrhttps://my.oschina.net/u/4253699/blog/, y_train_lr)
print("Linear regression predictions: "https://my.oschina.net/u/4253699/blog/, model_lr.predict(X_test_lr)[0][0])

model_rf = RandomForestRegressor(n_estimators = 1000https://my.oschina.net/u/4253699/blog/, max_depth = 1000https://my.oschina.net/u/4253699/blog/, random_state = 42)
model_rf.fit(X_train_rfhttps://my.oschina.net/u/4253699/blog/, y_train_rf)
print("Random forests regression predictions: "https://my.oschina.net/u/4253699/blog/, model_rf.predict(X_test_rf)[0])

Python中怎么预测缺失值

我就到此为止,但我鼓励你尝试一下特征选择和超参数调整,看看是否可以提高性能。此外,我鼓励你扩展此数据进行插补模型,以填补“region_1”和“designation”等分类字段中的缺失值。在这里,你可以构建一个基于树的分类模型,根据分类和数值特征来预测所列类别的缺失值。

关于Python中怎么预测缺失值就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


网站名称:Python中怎么预测缺失值
链接分享:http://bzwzjz.com/article/jihdgs.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都响应式网站建设 高端网站设计推广 成都网站建设 定制级高端网站建设 成都企业网站建设公司 成都网站制作 手机网站制作 成都网站建设 成都网站建设 四川成都网站制作 成都网站制作 成都网站设计公司 移动网站建设 成都网站设计 手机网站制作 定制网站建设多少钱 专业网站设计 成都网站建设公司 成都网站设计公司 企业网站建设公司 网站制作报价 专业网站建设