【干货】位图的实现与布隆过滤器-创新互联

位图是用一个btye位来表示一个数据是否存在,再通过哈希函数确定一个数据所在的位置,这样处理会使当仅需要判断一个数据在不在的时候大大的提高效率,缩小内存的使用,如一个数据为int型,而一个int型的数据构成的位图能表示32个数据的存在状态。代码实现如下:

为企业提供做网站、成都网站设计、网站优化、成都营销网站建设、竞价托管、品牌运营等营销获客服务。创新互联建站拥有网络营销运营团队,以丰富的互联网营销经验助力企业精准获客,真正落地解决中小企业营销获客难题,做到“让获客更简单”。自创立至今,成功用技术实力解决了企业“网站建设、网络品牌塑造、网络营销”三大难题,同时降低了营销成本,提高了有效客户转化率,获得了众多企业客户的高度认可!

Bitmap.h:

#include
class BitMap
{
public:
	BitMap(size_t size)
		:_size(0)
	{
		Size(size);
	}
	void Set(size_t key)
	{
		size_t index = key / 32;
		size_t offset = key % 32;
		_map[index]=_map[index] | (1 << offset);
		++_size;
	}
	void Reset(size_t key)
	{
		size_t index = key / 32;
		size_t offset = key % 32;
		if ((_map[index] >> offset) & 1)
		{
			_map[index] = _map[index] & (~(1 << offset));
			++_size;
		}
	}
	void Size(size_t size)
	{
		_map.resize(size);
	}
	bool Touch(size_t key)
	{
		size_t index = key / 32;
		size_t offset = key % 32;
		if ((_map[index] >> offset) & 1)
			return true;
		return false;
	}
protected:
	size_t _size;
	vector _map;
};

    布隆过滤器:布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。(百度百科)

    这里所说的映射函数我们一般定义几个,这样就可以加大避免冲突的几率,这里我写了个key为string 类的布隆过滤器,仅供参考:

BloomFilter.h:

#include"BitMap.h"
size_t BKDRHash(const char *str)//这里定义了5个映射算法,仅供参考
{
	register size_t hash = 0;
	while (size_t ch = (size_t)*str++)
	{
		hash = hash * 131 + ch;           
	}
	return hash;
}
size_t SDBMHash(const char *str)
{
	register size_t hash = 0;
	while (size_t ch = (size_t)*str++)
	{
		hash = 65599 * hash + ch;
		//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;  
	}
	return hash;
}

size_t RSHash(const char *str)
{
	register size_t hash = 0;
	size_t magic = 63689;
	while (size_t ch = (size_t)*str++)
	{
		hash = hash * magic + ch;
		magic *= 378551;
	}
	return hash;
}

size_t APHash(const char  *str)
{
	register size_t hash = 0;
	size_t ch;
	for (long i = 0; ch = (size_t)*str++; i++)
	{
		if ((i & 1) == 0)
		{
			hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
		}
		else
		{
			hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
		}
	}
	return hash;
}
size_t JSHash(const char *str)
{
	if (!*str)        // 以保证空字符串返回哈希值0  
		return 0;
	register size_t hash = 1315423911;
	while (size_t ch = (size_t)*str++)
	{
		hash ^= ((hash << 5) + ch + (hash >> 2));
	}
	return hash;
}
class BloomFilter
{
public:
	BloomFilter(size_t size)
		:_capacity(size)
		, map(size)
	{}
	void Set(const string &key)
	{
		size_t index1 = BKDRHash(key.c_str())%_capacity;
		size_t index2 = SDBMHash(key.c_str()) % _capacity;
		size_t index3 = RSHash(key.c_str()) % _capacity;
		size_t index4 = APHash(key.c_str()) % _capacity;
		size_t index5 = JSHash(key.c_str()) % _capacity;
		map.Set(index1);
		map.Set(index2);
		map.Set(index3);
		map.Set(index4);
		map.Set(index5);
	}
	bool Touch(const string &key)
	{
		if (!map.Touch(BKDRHash(key.c_str()) % _capacity))
			return false;
		if (!map.Touch(SDBMHash(key.c_str()) % _capacity))
			return false;
		if (!map.Touch(RSHash(key.c_str()) % _capacity))
			return false;
		if (!map.Touch(APHash(key.c_str()) % _capacity))
			return false;
		if (!map.Touch(JSHash(key.c_str()) % _capacity))
			return false;
		return true;
	}
protected:
	size_t _capacity;
	BitMap map;
};

    如有疑问希望提出,有错误希望指正

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


文章名称:【干货】位图的实现与布隆过滤器-创新互联
文章位置:http://bzwzjz.com/article/iijjh.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站建设 手机网站设计 成都网站设计 成都网站制作 品牌网站建设 手机网站建设套餐 响应式网站建设 成都网站建设 定制网站设计 成都网站建设 商城网站建设 成都定制网站建设 成都营销网站制作 成都响应式网站建设 成都网站建设 成都网站设计 盐亭网站设计 网站建设推广 成都网站建设公司 营销型网站建设 网站建设 重庆网站建设