Hadoop运维记录系列(二十七)

记录一个调试 pyspark2sql 访问 HDFS 透明加密的问题。

创新互联建站是一家集网站建设,浙江企业网站建设,浙江品牌网站建设,网站定制,浙江网站建设报价,网络营销,网络优化,浙江网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

访问源码如下,使用 pyspark2.1.3,基于 CDH 5.14.0 hive 1.1.0 + parquet,其中select的部分会访问 hdfs 加密区域。

from pyspark.sql import SQLContext
from pyspark.sql import HiveContext, Row
from pyspark.sql.types import *
import pandas as pd
import pyspark.sql.functions as F
 
trial_pps_order = spark.read.parquet('/tmp/exia/trial_pps_select')
pps_order = spark.read.parquet('/tmp/exia/orders_pps_wc_member')
member_info = spark.read.parquet('/tmp/exia/member_info')
 
 
# newHiveContext=HiveContext(sc)
 
query_T="""  
 
select  * from crm.masterdata_hummingbird_product_mst_banner_v1 
where brand_name = 'pampers'
 
"""
product_mst=spark.sql(query_T)
 
product_mst.show()

在 zeppelin里运行后返回报错如下

Traceback (most recent call last):
  File "/tmp/zeppelin_pyspark-7483288776781667654.py", line 367, in 
    raise Exception(traceback.format_exc())
Exception: Traceback (most recent call last):
  File "/tmp/zeppelin_pyspark-7483288776781667654.py", line 360, in 
    exec(code, _zcUserQueryNameSpace)
  File "", line 14, in 
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/pyspark/sql/dataframe.py", line 318, in show
    print(self._jdf.showString(n, 20))
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
    format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o76.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 6, pg-dmp-slave28.hadoop, executor 1): java.io.IOException: No KeyProvider is configured, cannot access an encrypted file
	at org.apache.hadoop.hdfs.DFSClient.decryptEncryptedDataEncryptionKey(DFSClient.java:1338)
	at org.apache.hadoop.hdfs.DFSClient.createWrappedInputStream(DFSClient.java:1414)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:304)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
	at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766)
	at org.apache.hadoop.mapred.LineRecordReader.(LineRecordReader.java:109)
	at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:257)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.(HadoopRDD.scala:256)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:216)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
	at org.apache.spark.scheduler.Task.run(Task.scala:100)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1455)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1443)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1442)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
	at scala.Option.foreach(Option.scala:257)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1670)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1625)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1614)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1928)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1941)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1954)
	at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
	at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
	at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2390)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
	at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2792)
	at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2389)
	at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2396)
	at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2132)
	at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2131)
	at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2822)
	at org.apache.spark.sql.Dataset.head(Dataset.scala:2131)
	at org.apache.spark.sql.Dataset.take(Dataset.scala:2346)
	at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:238)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: No KeyProvider is configured, cannot access an encrypted file
	at org.apache.hadoop.hdfs.DFSClient.decryptEncryptedDataEncryptionKey(DFSClient.java:1338)
	at org.apache.hadoop.hdfs.DFSClient.createWrappedInputStream(DFSClient.java:1414)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:304)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
	at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766)
	at org.apache.hadoop.mapred.LineRecordReader.(LineRecordReader.java:109)
	at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:257)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.(HadoopRDD.scala:256)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:216)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
	at org.apache.spark.scheduler.Task.run(Task.scala:100)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	... 1 more

主要来说,日志里提示是没有提供访问加密区域的key,无法访问被加密的数据。

出现这个报错的主要原因是spark会优先使用其自身conf文件夹下的hive-site.xml配置项来访问hiveserver2服务,但是这个hive-site.xml文件里面没有配置访问加密区域所需要的配置。加上就OK了。

  
    hadoop.security.key.provider.path
    kms://http@dmp-master2.hadoop:16000/kms
  
  
    dfs.encrypt.data.transfer.algorithm
    3des
  
  
    dfs.encrypt.data.transfer.cipher.suites
    AES/CTR/NoPadding
  
  
    dfs.encrypt.data.transfer.cipher.key.bitlength
    256
  
  
    dfs.encryption.key.provider.uri
    kms://http@dmp-master2.hadoop:16000/kms
  

网站栏目:Hadoop运维记录系列(二十七)
文章转载:http://bzwzjz.com/article/igcocj.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 做网站设计 成都网站建设 企业网站建设公司 定制网站设计 成都网站设计制作公司 定制网站制作 营销网站建设 网站建设改版 成都网站设计 专业网站建设 成都网站设计 宜宾网站设计 成都商城网站建设 成都网站建设 成都网站建设 网站建设 泸州网站建设 成都定制网站建设 成都网站制作 四川成都网站建设 成都网站建设 响应式网站建设