海量数据迁移之通过rowid切分大表

在之前的章节中,讨论过了通过 分区+并行等方式来进行超大的表的切分,通过这种方式能够极大的提高数据的平均分布,但是不是最完美的。
比如在数据量再提高几个层次,我们假设这个表目前有1T的大小。有10个分区,最大的分区有400G,那么如果我们想尽可能的平均的导出数据,使用并行就不一定能够那么奏效了。
比方说我们要求每个dump文件控制在200M总有,那样的话400G的分区就需要800个并行才能完成,在实际的数据库维护中,我们知道默认的并行数只有64个,提高几倍,也不可能超过800
所以在数据量极大的情况下,如果资源紧张,可能生成的dump就会比较大。

我们考虑使用rowid来满足我们的需求。
我们可以根据需要来指定需要生成几个dump文件。比如表subscriber有600M,那么如果按照200M为一个单位,我们需要生成3个dump文件。
如果想数据足够平均,就需要在rowid上做点功夫。
我们先设定一个参数文件,如下的格式。
可以看到表memo数据量极大,按照200M一个单位,最大的分区(P9_A3000_E5)需要800个并行。
表ICE_AGREEMENT比较小,不是分区表,我们以x来临时作为分区表的代名,在处理的时候可以方便的甄别

MEMO                                 P9_A3000_E0                           156
MEMO                                 P9_A3000_E1                           170
MEMO                                 P9_A3000_E2                           190
MEMO                                 P9_A3000_E3                           200
MEMO                                 P9_A3000_E4                           180
MEMO                                 P9_A3000_E5                           800
MEMO                                 PMAXVALUE_AMAXVALUE_EMAXVALUE         1
ICE_AGREEMENT                        x                                    36
CRIBER_HISTORY                       x                                    11

可以使用如下的脚本来完成rowid的切分。

创新互联是专业的建安网站建设公司,建安接单;提供成都网站设计、网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行建安网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

#### $1 dba conn details
#### $2 table owner
#### $3 table_name
#### $4 subobject_name
#### $5 parallel_no
function normal_split
{
sqlplus -s $1 <<1eof
 set linesize 200
set pages 0
set feedback off
spool list/rowid_range_$3_x.lst
select rownum || ', ' ||' rowid between '||
chr(39)||dbms_rowid.rowid_create( 1, DOI, lo_fno, lo_block, 0 ) ||chr(39)|| ' and  ' ||
chr(39)||dbms_rowid.rowid_create( 1, DOI, hi_fno, hi_block, 1000000 )||chr(39) data
from (
SELECT DISTINCT DOI, grp,
first_value(relative_fno) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) lo_fno,
first_value(block_id ) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) lo_block,
last_value(relative_fno) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) hi_fno,
last_value(block_id+blocks-1) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) hi_block,
SUM(blocks) over (partition BY DOI,grp) sum_blocks,SUBOBJECT_NAME
     FROM(
SELECT   obj.OBJECT_ID,
                 obj.SUBOBJECT_NAME,
                 obj.DATA_OBJECT_ID     as DOI,
                 ext.relative_fno,
         ext.block_id,
         ( SUM(blocks) over () ) SUM,
         (SUM(blocks) over (ORDER BY DATA_OBJECT_ID,relative_fno, block_id)-0.01 ) sum_fno ,
         TRUNC( (SUM(blocks) over (ORDER BY DATA_OBJECT_ID,relative_fno, block_id)-0.01) / (SUM(blocks) over ()/ $5 ) ) grp,
         ext.blocks
FROM     dba_extents ext, dba_objects obj
WHERE    ext.segment_name = UPPER('$3')
AND      ext.owner        = UPPER('$2')
AND      obj.owner       =  ext.owner
AND      obj.object_name     = ext.segment_name
AND      obj.DATA_OBJECT_ID IS NOT NULL
ORDER BY DATA_OBJECT_ID, relative_fno, block_id
) order by  DOI,grp
);
spool off;
EOF
}

function partition_split
{
sqlplus -s $1 <<1eof
 set linesize 200
set pages 0
set feedback off
spool list/rowid_range_$3_$4.lst
select rownum || ', ' ||' rowid between '||
chr(39)||dbms_rowid.rowid_create( 1, DOI, lo_fno, lo_block, 0 ) ||chr(39)|| ' and  ' ||
chr(39)||dbms_rowid.rowid_create( 1, DOI, hi_fno, hi_block, 1000000 )||chr(39) data
from (
SELECT DISTINCT DOI, grp,
first_value(relative_fno) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) lo_fno,
first_value(block_id ) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) lo_block,
last_value(relative_fno) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) hi_fno,
last_value(block_id+blocks-1) over (partition BY DOI,grp order by relative_fno, block_id rows BETWEEN unbounded preceding AND unbounded following) hi_block,
SUM(blocks) over (partition BY DOI,grp) sum_blocks,SUBOBJECT_NAME
     FROM(
SELECT   obj.OBJECT_ID,
                 obj.SUBOBJECT_NAME,
                 obj.DATA_OBJECT_ID     as DOI,
                 ext.relative_fno,
         ext.block_id,
         ( SUM(blocks) over () ) SUM,
         (SUM(blocks) over (ORDER BY DATA_OBJECT_ID,relative_fno, block_id)-0.01 ) sum_fno ,
         TRUNC( (SUM(blocks) over (ORDER BY DATA_OBJECT_ID,relative_fno, block_id)-0.01) / (SUM(blocks) over ()/ $5 ) ) grp,
         ext.blocks
FROM     dba_extents ext, dba_objects obj
WHERE    ext.segment_name = UPPER('$3')
AND      ext.owner        = UPPER('$2')
AND      obj.owner       =  ext.owner
AND      obj.object_name     = ext.segment_name
AND      obj.DATA_OBJECT_ID IS NOT NULL
AND      obj.subobject_name=UPPER('$4')
ORDER BY DATA_OBJECT_ID, relative_fno, block_id
) order by  DOI,grp
);
spool off
EOF
}

sub_partition_name=$4

if [[ $sub_partition_name = 'x' ]]
then
normal_split $1 $2 $3 x $5
else
partition_split $1 $2 $3 $4 $5
fi

脚本比较长,需要的参数有5个,因为访问dba_extents,dba_objects需要一定的权限,可以使用dba权限的账号即可。
第2个参数是表的owner,第3个参数是表名,第4个参数是分区表名(如果是分区表就是分区表名,如果不是就填x),第5个参数就是期望使用的并行度,能够在一定程度上加快速度
简单演示一下,可以通过下面的方式来运行脚本,我们指定生成10个dump这个表不是分区表。

ksh gen_rowid.sh n1/n1 prdowner subscriber_history x 10
1,  where  rowid between 'AAB4VPAAJAAD7qAAAA' and  'AAB4VPAAJAAD/R/EJA'
2,  where  rowid between 'AAB4VPAAJAAD/SAAAA' and  'AAB4VPAAKAABV5/EJA'
3,  where  rowid between 'AAB4VPAAKAABV6AAAA' and  'AAB4VPAALAAE/p/EJA'
4,  where  rowid between 'AAB4VPAALAAE/qAAAA' and  'AAB4VPAAMAAFFh/EJA'
5,  where  rowid between 'AAB4VPAAMAAFFiAAAA' and  'AAB4VPAAyAACuh/EJA'
6,  where  rowid between 'AAB4VPAAyAACuiAAAA' and  'AAB4VPAAzAACe5/EJA'
7,  where  rowid between 'AAB4VPAAzAACe6AAAA' and  'AAB4VPAA1AACZR/EJA'
8,  where  rowid between 'AAB4VPAA1AACZSAAAA' and  'AAB4VPAA2AACWR/EJA'
9,  where  rowid between 'AAB4VPAA2AACWSAAAA' and  'AAB4VPAA4AACP5/EJA'
10,  where  rowid between 'AAB4VPAA4AACQCAAAA' and  'AAB4VPAA5AACHx/EJA'
然后我们来看看数据是否足够平均。
可以类似下面的方式验证,我们抽第1,2,10个。

SQL> select count(*)from subscriber_history  where  rowid between 'AAB4VPAAJAAD7qAAAA' and  'AAB4VPAAJAAD/R/EJA'
  2  ;

  COUNT(*)
----------
    328759

SQL> select count(*)from  subscriber_history   where  rowid between 'AAB4VPAAJAAD/SAAAA' and  'AAB4VPAAKAABV5/EJA'
  2  /

  COUNT(*)
----------
    318021

SQL> select count(*)from subscriber_history  where  rowid between 'AAB4VPAA4AACQCAAAA' and  'AAB4VPAA5AACHx/EJA';

  COUNT(*)
----------
    332638

可以看到数据还是很平均的,达到了我们的期望。


当前标题:海量数据迁移之通过rowid切分大表
URL网址:http://bzwzjz.com/article/ieooss.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站建设公司 成都网站建设 重庆手机网站建设 移动手机网站制作 专业网站建设 重庆网站设计 成都网站设计 商城网站建设 成都企业网站制作 成都网站建设 成都网站建设公司 营销型网站建设 重庆网站建设 成都网站建设 攀枝花网站设计 品牌网站建设 成都品牌网站建设 网站建设公司 成都网站建设 成都网站建设公司 温江网站设计 成都h5网站建设