java线性代数代码,java 线性代数

谁帮我写一个多元一次方程自动求解的程序啊 用JAVA写

可以考虑线性代数多元一次方程解决方案

成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:做网站、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的兴庆网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

比如:

3x + 2y + 5z = 22

2x - 3y + 7z = 17

x + 6y - 3z = 4

则转化系数为行列式数组

int[][] param = {

{3, 2, 5, 22},

{2, -3, 7, 17},

{1, 6, -3, 4}

};

参考编码:

public static void main(String[] args) throws Exception {

int[][] param = {

{3, 2, 5, 22},

{2, -3, 7, 17},

{1, 6, -3, 4}

};

double[] result = new double[param.length];

double a = calc(param);

for (int i = 0; i param.length; i++) {

int[][] param2 = new int[param.length][param.length];

for (int m = 0; m param2.length; m++) {

for (int n = 0; n param2[m].length; n++) {

if (n == i) {

param2[m][n] = param[m][param[m].length - 1];

} else {

param2[m][n] = param[m][n];

}

}

}

result[i] = calc(param2) / a;

}

System.out.print("[");

for (int i = 0; i result.length; i++) {

if (i != 0) System.out.print(", ");

System.out.print(result[i]);

}

System.out.println("]");

}

private static int calc(int[][] param) {

int sum = 0;

int length = param.length;

for (int i = 0; i length; i++) {

int x = i;

int tmp = 1, tmp2 = 1;

for (int m = 0; m length; m++) {

tmp *= param[(x + m) % length][m];

tmp2 *= param[(x + m) % length][Math.abs(length - 1 - m) % length];

}

sum += tmp;

sum -= tmp2;

}

return sum;

}

如何用JAVA程序解决三元一次方程组?

可以用线性代数的知识解决。

把 X,Y,Z 和 后面的值 转化为 行列式,计算行列式的值就可以求解这道题目了。

叫 克莱姆法则,查查资料,就能解决了。

如果你还需要答案的话,跟我联系。qq:2838844

要编写一个两个矩阵相乘的JAVA方法,本人不懂,求高手帮忙!!万分感激!!

你好,按照你的要求代码如下,给出了注释和运行结果,可以直接运行:

public class test2 {

public static int[][] multiplyMatrix(int[][] a, int[][] b) {

// 判断是否合法

if (a == null || a == null || a.length == 0 || b.length == 0

|| a[0].length != b.length) {

return null;

}

// 计算相乘

int[][] c = new int[a.length][b[0].length];

for (int i = 0; i a.length; i++) {

for (int j = 0; j b[0].length; j++) {

for (int k = 0; k a[0].length; k++) {

c[i][j] += a[i][k] * b[k][j];

}

}

}

return c;

}

public static void main(String[] args) {

int[][] a = new int[][] { { 1, 2, 3 }, { 1, 2, 3 } };

int[][] b = new int[][] { { 1, 2 }, { 1, 2 }, { 1, 2 } };

int[][] c = multiplyMatrix(a, b);

printMatrix(a);

printMatrix(b);

printMatrix(c);

}

// 打印矩阵

public static void printMatrix(int[][] c) {

if (c != null) {

for (int i = 0; i c.length; i++) {

for (int j = 0; j c[0].length; j++) {

System.out.print(c[i][j] + " ");

}

System.out.println();

}

} else {

System.out.println("无效");

}

System.out.println();

}

}

运行结果:

1 2 3

1 2 3

1 2

1 2

1 2

6 12

6 12

用java声明Matrix类表示矩阵,使用二维数组存储矩阵元素,实现以下方法:

public class Matrix {

private static String matrix_A;

private int mx[][], m, n;

public Matrix(int r, int c) {

m = r;

n = c;

mx = new int[m][n];

iniMatrix();

}

public Matrix() {

m = 3;

n = 3;

mx = new int[3][3];

iniMatrix();

}

public void iniMatrix()// 随机取数

{

int i, j;

for (i = 0; i = m - 1; i++)

for (j = 0; j = n - 1; j++)

mx[i][j] = (int) (Math.random() * 100);

}

public void tranMatrix()// 转置矩阵

{

int i, j, t;

int mt[][] = new int[m][n];

for (i = 0; i = m - 1; i++)

for (j = 0; j = n - 1; j++)

mt[i][j] = mx[i][j];

t = m;

m = n;

n = t;

mx = new int[m][n];

for (i = 0; i = m - 1; i++)

for (j = 0; j = n - 1; j++)

mx[i][j] = mt[j][i];

}

public void printMatrix()// 输出矩阵所有值

{

int i, j;

for (i = 0; i = m - 1; i++) {

for (j = 0; j = n - 1; j++)

System.out.print(" " + mx[i][j]);

System.out.println();

}

}

//判断一个矩阵是否为上三角矩阵

public boolean isUpperTriangularMatrix() {

int i, j = 0;

int c = this.mx[1][0];

for(i=1; ithis.mx.length; i++)

for(j=0; ji; j++)

if(this.mx[i][j] != c)

break;

if(i=this.mx.length)

return true;

return false;

}

public void addMatrix(Matrix b)// 矩阵相加

{

int i, j;

for (i = 0; i = m - 1; i++)

for (j = 0; j = n - 1; j++)

mx[i][j] = mx[i][j] + b.mx[i][j];

}

public static void main(String args[]) {

Matrix ma = new Matrix(4, 3);

Matrix mb = new Matrix(4, 3);

System.out.println("The matrix_A:");

ma.printMatrix();

System.out.println("The matrix_B:");

mb.printMatrix();

if(ma.isUpperTriangularMatrix())

System.out.println("上三角矩阵:\n" + ma.isUpperTriangularMatrix());

System.out.println("Matrix_A + Matrix_B:");

ma.addMatrix(mb);

ma.printMatrix();

System.out.println("Transpose Matrix_A:");

mb.tranMatrix();

mb.printMatrix();

System.out.println("Transpose Matrix_A+Matrix_B:");

mb.tranMatrix();

mb.printMatrix();

}

}


文章标题:java线性代数代码,java 线性代数
文章地址:http://bzwzjz.com/article/hopsgo.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 泸州网站建设 成都网站建设公司 网站设计制作 网站建设费用 定制网站建设 品牌网站建设 成都营销网站制作 成都网站制作 重庆网站建设 盐亭网站设计 成都网站建设公司 成都网站制作 网站设计公司 成都网站设计 网站建设公司 成都网站制作 网站建设改版 网站建设公司 企业网站设计 成都营销网站建设 广安网站设计 网站制作公司