这就要说到 Python 类语言和 C 类语言的主要区别了,Python 属于解释型语言,通俗来说就是你可以一句一句地输入,而 Python 解释器(Interpreter)可以一句一句地执行,而 C 语言属于编译型语言,无法做到这一点,只能一次性输入完成,编译成一个完整的程序再执行,而这个编译的过程由于现代编译器做了非常多的优化,并且你的程序没有输入只有输出,每次运行都出固定的结果,所以极有可能被编译器优化成为了只有一条输出语句(实际情况可能要复杂一些),总的来说就是由于二者之间原理的差异导致了性能的差异,你可以搜一搜相关的资料,关掉 C 语言编译时的优化,再看一下性能,或者将固定的那些值改为运行时需要输入再看一下效果。
站在用户的角度思考问题,与客户深入沟通,找到宾川网站设计与宾川网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站制作、做网站、企业官网、英文网站、手机端网站、网站推广、空间域名、网页空间、企业邮箱。业务覆盖宾川地区。
Python 相较于 C 的优势有很多,性能这一方面你不需要关心,做出一个足够复杂的程序,它们之间运行效率差不了多少的。
time.sleep() 函数命名来源于英文单词time(时间)和sleep(睡眠)。
time 是python带的非内置库,使用时需要import,主要用于处理和时间相关的操作。
time.sleep用于给定时间内挂起(等待)当前线程的执行。
time.sleep() 函数的例子:
可以注释掉time.sleep(2)再运行一次对比一下
可以看到虽然都是打印出一样的结果,但time.sleep()加入了等待时间
这里还要解释一下python中线程与进程的区别。
举个例子,厨房做菜看成是一个进程,那么这个进程下面就可能有多个人或一个人(cpu基本执行单元,即线程)来执行,多个人可以分别洗菜,刷碗,摆盘等等同时作业,他们又是共享这个厨房的资源的。每个人存在一定的资源竞争关系,比如炉火只有1个。
这里time.sleep是针对线程执行的,也就是其中一个人去sleep睡觉了,不影响其他人的继续工作。
参数
该函数没有返回值。
结果类似如下:
可以看到秒数相差了5
无
time.sleep()常用于推迟执行的场景
在python中,与时间相关的模块有:time,datetime以及calendar
对基础运行环境有疑问的,推荐参考: python函数深入浅出 0.基础篇
因为程序陷入死循环了,while x 0: 而你输入的x始终是大于0的,就会一直持续不断的运行下去,进而占用系统资源了。原因在于,你没有终止while循环的条件,修改如下
def my_abs(a, x= 2):
s= 1;
while x 0:
s= s*a;
x = x-1 # 每循环一次x就减1,这样一旦x=0就终止循环了
return s
print(my_abs(4,3))
yxhtest7772017-07-18
关注
分享
 697  2
python运行速度慢怎么办?6个Python性能优化技巧

Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。
Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。
关键代码可以依赖于扩展包
Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。
下面这些扩展包你可以考虑添加到你的个人扩展库中:
Cython
PyInlne
PyPy
Pyrex
这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。
使用关键字排序
有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。
优化循环
每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。
使用新版本
任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。
当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是