go语言做音乐推荐系统 go语言产品

GO语言商业案例(十八):stream

切换到新语言始终是一大步,尤其是当您的团队成员只有一个时有该语言的先前经验。现在,Stream 的主要编程语言从 Python 切换到了 Go。这篇文章将解释stream决定放弃 Python 并转向 Go 的一些原因。

和龙ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!

Go 非常快。性能类似于 Java 或 C++。对于用例,Go 通常比 Python 快 40 倍。

对于许多应用程序来说,编程语言只是应用程序和数据库之间的粘合剂。语言本身的性能通常并不重要。然而,Stream 是一个API 提供商,为 700 家公司和超过 5 亿最终用户提供提要和聊天平台。多年来,我们一直在优化 Cassandra、PostgreSQL、Redis 等,但最终,您会达到所使用语言的极限。Python 是一门很棒的语言,但对于序列化/反序列化、排名和聚合等用例,它的性能相当缓慢。我们经常遇到性能问题,Cassandra 需要 1 毫秒来检索数据,而 Python 会花费接下来的 10 毫秒将其转换为对象。

看看我如何开始 Go 教程中的一小段 Go 代码。(这是一个很棒的教程,也是学习 Go 的一个很好的起点。)

如果您是 Go 新手,那么在阅读那个小代码片段时不会有太多让您感到惊讶的事情。它展示了多个赋值、数据结构、指针、格式和一个内置的 HTTP 库。当我第一次开始编程时,我一直喜欢使用 Python 更高级的功能。Python 允许您在编写代码时获得相当的创意。例如,您可以:

这些功能玩起来很有趣,但是,正如大多数程序员会同意的那样,在阅读别人的作品时,它们通常会使代码更难理解。Go 迫使你坚持基础。这使得阅读任何人的代码并立即了解发生了什么变得非常容易。 注意:当然,它实际上有多“容易”取决于您的用例。如果你想创建一个基本的 CRUD API,我仍然推荐 Django + DRF或 Rails。

作为一门语言,Go 试图让事情变得简单。它没有引入许多新概念。重点是创建一种非常快速且易于使用的简单语言。它唯一具有创新性的领域是 goroutine 和通道。(100% 正确CSP的概念始于 1977 年,所以这项创新更多是对旧思想的一种新方法。)Goroutines 是 Go 的轻量级线程方法,通道是 goroutines 之间通信的首选方式。Goroutines 的创建非常便宜,并且只需要几 KB 的额外内存。因为 Goroutine 非常轻量,所以有可能同时运行数百甚至数千个。您可以使用通道在 goroutine 之间进行通信。Go 运行时处理所有复杂性。goroutines 和基于通道的并发方法使得使用所有可用的 CPU 内核和处理并发 IO 变得非常容易——所有这些都不会使开发复杂化。与 Python/Java 相比,在 goroutine 上运行函数需要最少的样板代码。您只需在函数调用前加上关键字“go”:

Go 的并发方法很容易使用。与 Node 相比,这是一种有趣的方法,开发人员必须密切关注异步代码的处理方式。Go 中并发的另一个重要方面是竞争检测器。这样可以很容易地确定异步代码中是否存在任何竞争条件。

我们目前用 Go 编写的最大的微服务编译需要 4 秒。与以编译速度慢而闻名的 Java 和 C++ 等语言相比,Go 的快速编译时间是一项重大的生产力胜利。我喜欢在程序编译的时候摸鱼,但在我还记得代码应该做什么的同时完成事情会更好。

首先,让我们从显而易见的开始:与 C++ 和 Java 等旧语言相比,Go 开发人员的数量并不多。根据StackOverflow的数据, 38% 的开发人员知道 Java, 19.3% 的人知道 C++,只有 4.6% 的人知道 Go。GitHub 数据显示了类似的趋势:Go 比 Erlang、Scala 和 Elixir 等语言使用更广泛,但不如 Java 和 C++ 流行。幸运的是,Go 是一种非常简单易学的语言。它提供了您需要的基本功能,仅此而已。它引入的新概念是“延迟”声明和内置的并发管理与“goroutines”和通道。(对于纯粹主义者来说:Go 并不是第一种实现这些概念的语言,只是第一种使它们流行起来的语言。)任何加入团队的 Python、Elixir、C++、Scala 或 Java 开发人员都可以在一个月内在 Go 上发挥作用,因为它的简单性。与许多其他语言相比,我们发现组建 Go 开发人员团队更容易。如果您在博尔德和阿姆斯特丹等竞争激烈的生态系统中招聘人员,这是一项重要的优势。

对于我们这样规模的团队(约 20 人)来说,生态系统很重要。如果您必须重新发明每一个小功能,您根本无法为您的客户创造价值。Go 对我们使用的工具有很好的支持。实体库已经可用于 Redis、RabbitMQ、PostgreSQL、模板解析、任务调度、表达式解析和 RocksDB。与 Rust 或 Elixir 等其他较新的语言相比,Go 的生态系统是一个重大胜利。它当然不如 Java、Python 或 Node 之类的语言好,但它很可靠,而且对于许多基本需求,你会发现已经有高质量的包可用。

Gofmt 是一个很棒的命令行实用程序,内置在 Go 编译器中,用于格式化代码。就功能而言,它与 Python 的 autopep8 非常相似。我们大多数人并不真正喜欢争论制表符与空格。格式的一致性很重要,但实际的格式标准并不那么重要。Gofmt 通过使用一种正式的方式来格式化您的代码来避免所有这些讨论。

Go 对协议缓冲区和 gRPC 具有一流的支持。这两个工具非常适合构建需要通过 RPC 通信的微服务。您只需要编写一个清单,在其中定义可以进行的 RPC 调用以及它们采用的参数。然后从这个清单中自动生成服务器和客户端代码。生成的代码既快速又具有非常小的网络占用空间并且易于使用。从同一个清单中,您甚至可以为许多不同的语言生成客户端代码,例如 C++、Java、Python 和 Ruby。因此,内部流量不再有模棱两可的 REST 端点,您每次都必须编写几乎相同的客户端和服务器代码。.

Go 没有像 Rails 用于 Ruby、Django 用于 Python 或 Laravel 用于 PHP 那样的单一主导框架。这是 Go 社区内激烈争论的话题,因为许多人主张你不应该一开始就使用框架。我完全同意这对于某些用例是正确的。但是,如果有人想构建一个简单的 CRUD API,他们将更容易使用 Django/DJRF、Rails Laravel 或Phoenix。对于 Stream 的用例,我们更喜欢不使用框架。然而,对于许多希望提供简单 CRUD API 的新项目来说,缺乏主导框架将是一个严重的劣势。

Go 通过简单地从函数返回错误并期望调用代码来处理错误(或将其返回到调用堆栈)来处理错误。虽然这种方法有效,但很容易失去问题的范围,以确保您可以向用户提供有意义的错误。错误包通过允许您向错误添加上下文和堆栈跟踪来解决此问题。另一个问题是很容易忘记处理错误。像 errcheck 和 megacheck 这样的静态分析工具可以方便地避免犯这些错误。虽然这些变通办法效果很好,但感觉不太对劲。您希望该语言支持正确的错误处理。

Go 的包管理绝不是完美的。默认情况下,它无法指定特定版本的依赖项,也无法创建可重现的构建。Python、Node 和 Ruby 都有更好的包管理系统。但是,使用正确的工具,Go 的包管理工作得很好。您可以使用Dep来管理您的依赖项,以允许指定和固定版本。除此之外,我们还贡献了一个名为的开源工具VirtualGo,它可以更轻松地处理用 Go 编写的多个项目。

我们进行的一个有趣的实验是在 Python 中使用我们的排名提要功能并在 Go 中重写它。看看这个排名方法的例子:

Python 和 Go 代码都需要执行以下操作来支持这种排名方法:

开发 Python 版本的排名代码大约花了 3 天时间。这包括编写代码、单元测试和文档。接下来,我们花了大约 2 周的时间优化代码。其中一项优化是将分数表达式 (simple_gauss(time)*popularity) 转换为抽象语法树. 我们还实现了缓存逻辑,可以在未来的特定时间预先计算分数。相比之下,开发此代码的 Go 版本大约需要 4 天时间。性能不需要任何进一步的优化。因此,虽然 Python 的最初开发速度更快,但基于 Go 的版本最终需要我们团队的工作量大大减少。另外一个好处是,Go 代码的执行速度比我们高度优化的 Python 代码快大约 40 倍。现在,这只是我们通过切换到 Go 体验到的性能提升的一个示例。

与 Python 相比,我们系统的其他一些组件在 Go 中构建所需的时间要多得多。作为一个总体趋势,我们看到 开发 Go 代码需要更多的努力。但是,我们花更少的时间 优化 代码以提高性能。

我们评估的另一种语言是Elixir.。Elixir 建立在 Erlang 虚拟机之上。这是一种迷人的语言,我们之所以考虑它,是因为我们的一名团队成员在 Erlang 方面拥有丰富的经验。对于我们的用例,我们注意到 Go 的原始性能要好得多。Go 和 Elixir 都可以很好地服务数千个并发请求。但是,如果您查看单个请求的性能,Go 对于我们的用例来说要快得多。我们选择 Go 而不是 Elixir 的另一个原因是生态系统。对于我们需要的组件,Go 有更成熟的库,而在许多情况下,Elixir 库还没有准备好用于生产环境。培训/寻找开发人员使用 Elixir 也更加困难。这些原因使天平向 Go 倾斜。Elixir 的 Phoenix 框架看起来很棒,绝对值得一看。

Go 是一种非常高性能的语言,对并发有很好的支持。它几乎与 C++ 和 Java 等语言一样快。虽然与 Python 或 Ruby 相比,使用 Go 构建东西确实需要更多时间,但您将节省大量用于优化代码的时间。我们在Stream有一个小型开发团队,为超过 5 亿最终用户提供动力和聊天。Go 结合了 强大的生态系统 、新开发人员的 轻松入门、快速的性能 、对并发的 可靠支持和高效的编程环境 ,使其成为一个不错的选择。Stream 仍然在我们的仪表板、站点和机器学习中利用 Python 来提供个性化的订阅源. 我们不会很快与 Python 说再见,但今后所有性能密集型代码都将使用 Go 编写。我们新的聊天 API也完全用 Go 编写。

golang使用Nsq

1. 介绍

最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。

官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。

1.1 Features

1). Distributed

NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。

2). Scalable易于扩展

NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。

3). Ops Friendly

NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。

4.Integrated高度集成

官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。

1.2 组件

1.3 拓扑结构

NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。

NSQ

首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。

事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。

nsqd

每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。

nsqlookupd

2. Internals

2.1 消息传递担保

1)客户表示已经准备好接收消息

2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)

3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息

这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。

如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。

2.2 简化配置和管理

单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。

在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。

2.3 消除单点故障

NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。

这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。

2.4 效率

对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。

efficiency

2.5 心跳和超时

组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。

2.6 分布式

因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。

这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。

2.7 no replication

不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。

2.8 没有严格的顺序

虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。

2.9 无数据重复删除功能

NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。

3. 实践安装过程

本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。

3.1 拓扑结构

topology

实验采用3台NSQD服务,2台LOOKUPD服务。

采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。

NSQ基本没有配置文件,配置通过命令行指定参数。

主要命令如下:

LOOKUPD命令

NSQD命令

工具类,消费后存储到本地文件。

发布一条消息

3.2 nsqadmin

对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。

nsqadmin

channel

列出所有的NSQD节点:

nodes

消息的统计:

msgs

lookup主机的列表:

hosts

4. 总结

NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。

事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。

结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。

国内重要的 Go 语言项目:TiDB 3.0 GA,稳定性和性能大幅提升

TiDB 是 PingCAP 自主研发的开源分布式关系型数据库,具备商业级数据库的数据可靠性,可用性,安全性等特性,支持在线弹性水平扩展,兼容 MySQL 协议及生态,创新性实现 OLTP 及 OLAP 融合。

TiDB 3.0 版本显著提升了大规模集群的稳定性,集群支持 150+ 存储节点,300+TB 存储容量长期稳定运行。易用性方面引入大量降低用户运维成本的优化,包括引入 Information_Schema 中的多个实用系统视图、EXPLAIN ANALYZE、SQL Trace 等。在性能方面,特别是 OLTP 性能方面,3.0 比 2.1 也有大幅提升,其中 TPC-C 性能提升约 4.5 倍,Sysbench 性能提升约 1.5 倍,OLAP 方面,TPC-H 50G Q15 因实现 View 可以执行,至此 TPC-H 22 个 Query 均可正常运行。新功能方面增加了窗口函数、视图(实验特性)、分区表、插件系统、悲观锁(实验特性)。

截止本文发稿时 TiDB 已在 500+ 用户的生产环境中长期稳定运行,涵盖金融、保险、制造,互联网, 游戏 等领域,涉及交易、数据中台、 历史 库等多个业务场景。不同业务场景对关系型数据库的诉求可用 “百花齐放”来形容,但对关系数据库最根本的诉求未发生任何变化,如数据可靠性,系统稳定性,可扩展性,安全性,易用性等。请跟随我们的脚步梳理 TiDB 3.0 有什么样的惊喜。

3.0 与 2.1 版本相比,显著提升了大规模集群的稳定性,支持单集群 150+ 存储节点,300+TB 存储容量长期稳定运行,主要的优化点如下:

1. 优化 Raft 副本之间的心跳机制,按照 Region 的活跃程度调整心跳频率,减小冷数据对集群的负担。

2. 热点调度策略支持更多参数配置,采用更高优先级,并提升热点调度的准确性。

3. 优化 PD 调度流程,提供调度限流机制,提升系统稳定性。

4. 新增分布式 GC 功能,提升 GC 的性能,降低大集群 GC 时间,提升系统稳定性。

众所周知,数据库查询计划的稳定性对业务至关重要,TiDB 3.0 版本采用多种优化手段提升查询计划的稳定性,如下:

1. 新增 Fast Analyze 功能,提升收集统计信息的速度,降低集群资源的消耗及对业务的影响。

2. 新增 Incremental Analyze 功能,提升收集单调递增的索引统计信息的速度,降低集群资源的消耗及对业务的影响。

3. 在 CM-Sketch 中新增 TopN 的统计信息,缓解 CM-Sketch 哈希冲突导致估算偏大,提升代价估算的准确性,提升查询计划的稳定性。

4. 引入 Skyline Pruning 框架,利用规则防止查询计划过度依赖统计信息,缓解因统计信息滞后导致选择的查询计划不是最优的情况,提升查询计划的稳定性。

5. 新增 SQL Plan Management 功能,支持在查询计划不准确时手动绑定查询计划,提升查询计划的稳定性。

1. OLTP

3.0 与 2.1 版本相比 Sysbench 的 Point Select,Update Index,Update Non-Index 均提升约 1.5 倍,TPC-C 性能提升约 4.5 倍。主要的优化点如下:

1. TiDB 持续优化 SQL 执行器,包括:优化 NOT EXISTS 子查询转化为 Anti Semi Join,优化多表 Join 时 Join 顺序选择等。

2. 优化 Index Join 逻辑,扩大 Index Join 算子的适用场景并提升代价估算的准确性。

3. TiKV 批量接收和发送消息功能,提升写入密集的场景的 TPS 约 7%,读密集的场景提升约 30%。

4. TiKV 优化内存管理,减少 Iterator Key Bound Option 的内存分配和拷贝,多个 Column Families 共享 block cache 提升 cache 命中率等手段大幅提升性能。

5. 引入 Titan 存储引擎插件,提升 Value 值超过 1KB 时性能,缓解 RocksDB 写放大问题,减少磁盘 IO 的占用。

6. TiKV 新增多线程 Raftstore 和 Apply 功能,提升单节点内可扩展性,进而提升单节点内并发处理能力和资源利用率,降低延时,大幅提升集群写入能力。

TiDB Lightning 性能与 2019 年年初相比提升 3 倍,从 100GB/h 提升到 300GB/h,即 28MB/s 提升到 85MB/s,优化点,如下:

1. 提升 SQL 转化成 KV Pairs 的性能,减少不必要的开销。

2. 提升单表导入性能,单表支持批量导入。

3. 提升 TiKV-Importer 导入数据性能,支持将数据和索引分别导入。

4. TiKV-Importer 支持上传 SST 文件限速功能。

RBAC(Role-Based Access Control,基于角色的权限访问控制) 是商业系统中最常见的权限管理技术之一,通过 RBAC 思想可以构建最简单“用户-角色-权限”的访问权限控制模型。RBAC 中用户与角色关联,权限与角色关联,角色与权限之间一般是多对多的关系,用户通过成为什么样的角色获取该角色所拥有的权限,达到简化权限管理的目的,通过此版本的迭代 RBAC 功能开发完成。

IP 白名单功能(企业版特性) :TiDB 提供基于 IP 白名单实现网络安全访问控制,用户可根据实际情况配置相关的访问策略。

Audit log 功能(企业版特性) :Audit log 记录用户对数据库所执行的操作,通过记录 Audit log 用户可以对数据库进行故障分析,行为分析,安全审计等,帮助用户获取数据执行情况。

加密存储(企业版特性) :TiDB 利用 RocksDB 自身加密功能,实现加密存储的功能,保证所有写入到磁盘的数据都经过加密,降低数据泄露的风险。

完善权限语句的权限检查 ,新增 ANALYZE,USE,SET GLOBAL,SHOW PROCESSLIST 语句权限检查。

1. 新增 SQL 方式查询慢查询,丰富 TiDB 慢查询日志内容,如:Coprocessor 任务数,平均/最长/90% 执行/等待时间,执行/等待时间最长的 TiKV 地址,简化慢查询定位工作,提高排查慢查询问题效率,提升产品易用性。

2. 新增系统配置项合法性检查,优化系统监控项等,提升产品易用性。

3. 新增对 TableReader、IndexReader 和 IndexLookupReader 算子内存使用情况统计信息,提高 Query 内存使用统计的准确性,提升处理内存消耗较大语句的效率。

4. 制定日志规范,重构日志系统,统一日志格式,方便用户理解日志内容,有助于通过工具对日志进行定量分析。

5. 新增 EXPLAIN ANALYZE 功能,提升SQL 调优的易用性。

6. 新增 SQL 语句 Trace 功能,方便排查问题。

7. 新增通过 unix_socket 方式连接数据库。

8. 新增快速恢复被删除表功能,当误删除数据时可通过此功能快速恢复数据。

TiDB 3.0 新增 TiFlash 组件,解决复杂分析及 HTAP 场景。TiFlash 是列式存储系统,与行存储系统实时同步,具备低延时,高性能,事务一致性读等特性。 通过 Raft 协议从 TiKV 中实时同步行存数据并转化成列存储格式持久化到一组独立的节点,解决行列混合存储以及资源隔离性问题。TiFlash 可用作行存储系统(TiKV)实时镜像,实时镜像可独立于行存储系统,将行存储及列存储从物理隔离开,提供完善的资源隔离方案,HTAP 场景最优推荐方案;亦可用作行存储表的索引,配合行存储对外提供智能的 OLAP 服务,提升约 10 倍复杂的混合查询的性能。

TiFlash 目前处于 Beta 阶段,计划 2019 年 12 月 31 日之前 GA,欢迎大家申请试用。

未来我们会继续投入到系统稳定性,易用性,性能,弹性扩展方面,向用户提供极致的弹性伸缩能力,极致的性能体验,极致的用户体验。

稳定性方面 V4.0 版本将继续完善 V3.0 未 GA 的重大特性,例如:悲观事务模型,View,Table Partition,Titan 行存储引擎,TiFlash 列存储引擎;引入近似物理备份恢复解决分布数据库备份恢复难题;优化 PD 调度功能等。

性能方面 V4.0 版本将继续优化事务处理流程,减少事务资源消耗,提升性能,例如:1PC,省去获取 commit ts 操作等。

弹性扩展方面,PD 将提供弹性扩展所需的元信息供外部系统调用,外部系统可根据元信息及负载情况动态伸缩集群规模,达成节省成本的目标。

我们相信战胜“未知”最好的武器就是社区的力量,基础软件需要坚定地走开源路线。截止发稿我们已经完成 41 篇源码阅读文章。TiDB 开源社区总计 265 位 Contributor,6 位 Committer,在这里我们对社区贡献者表示由衷的感谢,希望更多志同道合的人能加入进来,也希望大家在 TiDB 这个开源社区能够有所收获。

TiDB 3.0 GA Release Notes:

go语言可以做什么

1、服务器编程:以前你如果使用C或者C++做的那些事情,用Go来做很合适,例如处理日志、数据打包、虚拟机处理、文件系统等。

2、分布式系统、数据库代理器、中间件:例如Etcd。

3、网络编程:这一块目前应用最广,包括Web应用、API应用、下载应用,而且Go内置的net/http包基本上把我们平常用到的网络功能都实现了。

4、开发云平台:目前国外很多云平台在采用Go开发,我们所熟知的七牛云、华为云等等都有使用Go进行开发并且开源的成型的产品。

5、区块链:目前有一种说法,技术从业人员把Go语言称作为区块链行业的开发语言。如果大家学习区块链技术的话,就会发现现在有很多很多的区块链的系统和应用都是采用Go进行开发的,比如ehtereum是目前知名度最大的公链,再比如fabric是目前最知名的联盟链,两者都有go语言的版本,且go-ehtereum还是以太坊官方推荐的版本。

自1.0版发布以来,go语言引起了众多开发者的关注,并得到了广泛的应用。go语言简单、高效、并发的特点吸引了许多传统的语言开发人员,其数量也在不断增加。

使用 Go 语言开发的开源项目非常多。早期的 Go 语言开源项目只是通过 Go 语言与传统项目进行C语言库绑定实现,例如 Qt、Sqlite 等。

后期的很多项目都使用 Go 语言进行重新原生实现,这个过程相对于其他语言要简单一些,这也促成了大量使用 Go 语言原生开发项目的出现。


本文名称:go语言做音乐推荐系统 go语言产品
转载注明:http://bzwzjz.com/article/hiipse.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都企业网站建设 成都网站建设公司 成都网站建设公司 自适应网站设计 移动手机网站制作 LED网站设计方案 高端品牌网站建设 品牌网站建设 网站建设方案 成都营销网站建设 成都企业网站设计 成都定制网站建设 成都响应式网站建设 成都h5网站建设 成都网站设计 营销网站建设 网站制作 网站建设费用 成都网站建设公司 成都网站制作 成都网站设计 专业网站建设