矩阵计算vb.net 矩阵计算器

vb.net中矩阵计算问题请教高手.

给你一个函数 Public Sub Vect1XtoVect2(ByVal x1 As Double, ByVal y1 As Double, ByVal z1 As Double, _ ByVal x2 As Double, ByVal y2 As Double, ByVal z2 As Double, _ ByRef xNew As Double, ByRef yNew As Double, ByRef zNew As Double) '矢量叉积 xNew = y1 * z2 - z1 * y2 yNew = z1 * x2 - x1 * z2 zNew = x1 * y2 - y1 * x2 End Sub其中x1,y1,z1为第一个矢量,x2,y2,z2为第二个矢量xnew,ynew,znew为得到的新矢量

创新互联是一家专业提供杭锦后企业网站建设,专注与成都网站建设、成都网站制作HTML5、小程序制作等业务。10年已为杭锦后众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。

求助,初学者想问VB.NET,怎么输入一维列矩阵或者一维行矩阵怎么转置成一维列矩阵?谢谢了!

在程序设计语言里,用二维数组来保存矩阵的值。

一维列矩阵,就是由:若干行、一列组成的二维数组。

一维行矩阵,就是由:一行、若干列组成的二维数组。

比如一维列矩阵,的输入:

dim a(10,1) as integer '10行,1列

dim i as integer

for i = 1 to 10

a(i,1) = inputbox("")

next i

求助!用Vb.net编写两个矩阵相乘!

Public Shared Sub Main()

Dim a As Integer, b As Integer, c As Integer, d As Integer

Console.WriteLine("该程序将求出两个矩阵的积:")

Console.WriteLine("请指定矩阵A的行数:")

a = Integer.Parse(Console.ReadLine())

Console.WriteLine("请指定矩阵A的列数:")

b = Integer.Parse(Console.ReadLine())

Dim MatrixA As Integer(,) = New Integer(a - 1, b - 1) {}

For i As Integer = 0 To a - 1

For j As Integer = 0 To b - 1

Console.WriteLine("请输入矩阵A第{0}行第{1}列的值:", i + 1, j + 1)

MatrixA(i, j) = Integer.Parse(Console.ReadLine())

Next

Next

Console.WriteLine("矩阵A输入完毕.")

Console.WriteLine("请指定矩阵B的行数:")

c = Integer.Parse(Console.ReadLine())

Console.WriteLine("请指定矩阵B的列数:")

d = Integer.Parse(Console.ReadLine())

Dim MatrixB As Integer(,) = New Integer(c - 1, d - 1) {}

For i As Integer = 0 To c - 1

For j As Integer = 0 To d - 1

Console.WriteLine("请输入矩阵A第{0}行第{1}列的值:", i + 1, j + 1)

MatrixB(i, j) = Integer.Parse(Console.ReadLine())

Next

Next

Console.WriteLine("矩阵B输入完毕.")

Console.WriteLine("矩阵A为:")

outputMatrix(MatrixA, a, b)

Console.WriteLine("矩阵B为:")

outputMatrix(MatrixB, c, d)

If b c Then

Console.WriteLine("矩阵A的列数与矩阵B的行数不相等,无法进行乘积运算!")

Return

Else

Console.WriteLine("矩阵A与矩阵B的乘积为:")

End If

Dim MatrixC As Integer(,) = New Integer(a - 1, d - 1) {}

For i As Integer = 0 To a - 1

For j As Integer = 0 To d - 1

MatrixC(i, j) = 0

For k As Integer = 0 To b - 1

MatrixC(i, j) += MatrixA(i, k) * MatrixB(k, j)

Next

Next

Next

outputMatrix(MatrixC, a, d)

End Sub

Private Shared Sub outputMatrix(MatrixX As Integer(,), rowCount As Integer, columnCount As Integer)

For i As Integer = 0 To rowCount - 1

For j As Integer = 0 To columnCount - 1

Console.Write(MatrixX(i, j) vbTab)

Next

Console.WriteLine()

Next

End Sub

End Class

vb.net 数组显示矩阵的一道题

'这是在vb6中的代码,在vb.net中基本差不多,你可以参考一下

Private Sub cmdCommand1_Click()

Me.AutoRedraw = True

Dim Grp

Grp = Array(1, 2, 3, 4, 5)

Dim i, j As Long

Dim StrPrt As String

For i = 0 To UBound(Grp)

'i为位移量

StrPrt = ""

For j = i To UBound(Grp)

StrPrt = StrPrt Grp(j)

Next j

For j = 0 To i - 1

StrPrt = StrPrt Grp(j)

Next j

Me.Print StrPrt

Next i

End Sub

用vb.net编程,建立一个m行n列的矩阵,找出其中最小的元素所在的行和列,并输出该值及其行、列位置

没错!!

你的算法是:

1.定义三个变量,minValue(放最小值),X(放最小值的X坐标),Y(放最小值的Y坐标)。

2.遍历矩阵。在遍历过程中将最小值放在minValue中,最小值的X坐标放在X中,最小值的Y坐标放在X中。

在vb中,关于矩阵赋值和计算的问题

Private Sub Command1_Click()

Dim i As Integer

Dim px(0 To 136) As Double

Dim py(0 To 136) As Double

Dim pz(0 To 136) As Double

For i = 0 To 136 '生成随机模拟数据

px(i) = Int(Rnd * 1000)

py(i) = Int(Rnd * 1000)

pz(i) = Int(Rnd * 1000)

Next

For i = 0 To 135 '按矩阵结构分布的数据;

Debug.Print px(i + 1) - px(i), 0, py(i) - py(i + 1)

Debug.Print py(i + 1) - py(i), 0, px(i + 1) - px(i)

Debug.Print pz(i + 1) - pz(i), -1, 0

Debug.Print "---------------------------------------"

Next

End Sub

以下是运行后的部分示例结果:希望对你有帮助

---------------------------------------

-68 0 419

-419 0 -68

-61 -1 0

---------------------------------------

-301 0 -667

667 0 -301

-235 -1 0

---------------------------------------

212 0 597

-597 0 212

-17 -1 0

---------------------------------------

-460 0 270

-270 0 -460

328 -1 0

---------------------------------------

774 0 -465

465 0 774

62 -1 0

---------------------------------------

13 0 325

-325 0 13

-116 -1 0

---------------------------------------

-577 0 -64

64 0 -577

125 -1 0

---------------------------------------

-257 0 -236

236 0 -257

462 -1 0

---------------------------------------

419 0 -392

392 0 419

-308 -1 0

---------------------------------------

-116 0 217

-217 0 -116

-593 -1 0

---------------------------------------

315 0 -8

8 0 315

433 -1 0

---------------------------------------

-601 0 477

-477 0 -601

-171 -1 0

---------------------------------------

629 0 173

-173 0 629

192 -1 0

---------------------------------------

-27 0 -750

750 0 -27

-193 -1 0

---------------------------------------

215 0 -4

4 0 215

349 -1 0

---------------------------------------

-67 0 -71

71 0 -67

-258 -1 0

---------------------------------------

-782 0 -79

79 0 -782

381 -1 0

---------------------------------------

573 0 553

-553 0 573

-781 -1 0

---------------------------------------

-529 0 237

-237 0 -529

493 -1 0

---------------------------------------

239 0 58

-58 0 239

-233 -1 0

---------------------------------------

237 0 -743

743 0 237

221 -1 0

---------------------------------------

-456 0 -47

47 0 -456

-125 -1 0

---------------------------------------

136 0 126

-126 0 136

-154 -1 0

---------------------------------------

123 0 534

-534 0 123

660 -1 0

---------------------------------------

164 0 -138

138 0 164

-489 -1 0

---------------------------------------

250 0 -211

211 0 250

542 -1 0

---------------------------------------

-343 0 255

-255 0 -343

-63 -1 0

---------------------------------------

-258 0 71

-71 0 -258

-690 -1 0

---------------------------------------

87 0 257

-257 0 87

564 -1 0

---------------------------------------

494 0 -276

276 0 494

-40 -1 0

---------------------------------------

-436 0 -533

533 0 -436

39 -1 0

---------------------------------------

33 0 734

-734 0 33

-331 -1 0

---------------------------------------

-98 0 -633

633 0 -98

-98 -1 0

---------------------------------------

459 0 559

-559 0 459

280 -1 0

---------------------------------------

158 0 -92

92 0 158

347 -1 0

---------------------------------------

-842 0 -741

741 0 -842

-307 -1 0

---------------------------------------

484 0 82

-82 0 484

-58 -1 0

---------------------------------------

-353 0 42

-42 0 -353

-500 -1 0

---------------------------------------

193 0 101

-101 0 193

171 -1 0

---------------------------------------

-60 0 362

-362 0 -60

281 -1 0

---------------------------------------

-108 0 -184

184 0 -108

-317 -1 0

---------------------------------------

-192 0 -314

314 0 -192

-98 -1 0

---------------------------------------

574 0 -5

5 0 574

120 -1 0

---------------------------------------

297 0 54

-54 0 297

210 -1 0

---------------------------------------

-457 0 77

-77 0 -457

393 -1 0

---------------------------------------

-110 0 574

-574 0 -110

-508 -1 0

---------------------------------------

31 0 43

-43 0 31

293 -1 0

---------------------------------------

-314 0 -53

53 0 -314

73 -1 0

---------------------------------------

405 0 22

-22 0 405

299 -1 0

---------------------------------------


分享名称:矩阵计算vb.net 矩阵计算器
链接地址:http://bzwzjz.com/article/hepedj.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都营销网站建设 企业网站设计 营销网站建设 网站制作 成都网站制作 四川成都网站建设 营销网站建设 专业网站建设 品牌网站建设 专业网站设计 成都营销网站制作 定制级高端网站建设 成都网站制作 手机网站建设 成都企业网站建设公司 成都企业网站设计 成都企业网站制作 成都网站设计 网站建设 成都网站制作 成都网站设计 网站制作报价