python误差棒图函数,python 误差棒

python 折线图怎么添加误差线

物信息、统计、网页制作、计算等多个领域都体现出了强大的功能。python和其他脚本语言如java、R、Perl 一样,都可以直接在命令行里运行脚本程序。工具/原料

我们提供的服务有:网站设计、网站制作、微信公众号开发、网站优化、网站认证、朝阳ssl等。为数千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的朝阳网站制作公司

python;CMD命令行;windows操作系统

方法/步骤

1、首先下载安装python,建议安装2.7版本以上,3.0版本以下,由于3.0版本以上不向下兼容,体验较差。

2、打开文本编辑器,推荐editplus,notepad等,将文件保存成 .py格式,editplus和notepad支持识别python语法。

脚本第一行一定要写上 #!usr/bin/python

表示该脚本文件是可执行python脚本

如果python目录不在usr/bin目录下,则替换成当前python执行程序的目录。

3、编写完脚本之后注意调试、可以直接用editplus调试。调试方法可自行百度。脚本写完之后,打开CMD命令行,前提是python 已经被加入到环境变量中,如果没有加入到环境变量,请百度

4、在CMD命令行中,输入 “python” + “空格”,即 ”python “;将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可。

Python数据分析在数学建模中的应用汇总(持续更新中!)

1、Numpy常用方法使用大全(超详细)

1、Series和DataFrame简单入门

2、Pandas操作CSV文件的读写

3、Pandas处理DataFrame,Series进行作图

1、Matplotlib绘图之属性设置

2、Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图

1、层次分析法(AHP)——算数平均值法、几何平均值法、特征值法(Python实现,超详细注释)

2、Python实现TOPSIS分析法(优劣解距离法)

3、Python实现线性插值和三次样条插值

4、Python实现线性函数的拟合算法

5、Python实现统计描述以及计算皮尔逊相关系数

6、Python实现迪杰斯特拉算法和贝尔曼福特算法求解最短路径

Python最小二乘法拟合与作图

在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:

这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。

此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:

Python的使用中需要导入相应的模块,此处首先用 import 语句

分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。

接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:

其参数有:

进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:

紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:

返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。

leastsq() 的参数具体有:

输出选项有:

最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:

pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。

pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。

pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。

pylab.show() 函数用于显示图像。

最终结果如下图所示:

用Python作科学计算

numpy.loadtxt

scipy.optimize.leastsq

Python数据可视化-误差棒图errorbar

实验中往往由于各种原因会存在一定的误差,针对这一波动范围我们称之为置信区间。在可视化数据时,Matplotlib中的误差棒图(errorbar, 官方项目地址 )可以很好的表现这种有一定置信区间的带误差数据。

matplotlib.pyplot.errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None, capsize=None, capthick=None)

主要参数说明:

x,y: 数据点的位置坐标

xerr,yerr: 数据的误差范围

fmt: 数据点的标记样式以及相互之间连接线样式

ecolor: 误差棒的线条颜色

elinewidth: 误差棒的线条粗细

capsize: 误差棒边界横杠的大小

capthick: 误差棒边界横杠的厚度

ms: 数据点的大小

mfc: 数据点的颜色

mec: 数据点边缘的颜色

示例:

运行结果:

运行结果:

用Python画图

今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?

搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图

第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。

它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:

turtle.forward(200)

turtle.left(170)

第一个命令是移动200个单位并画出来轨迹

第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度

然后呢? 循环重复就画出来这个图了

好玩吧。

有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。

Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。

Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。

使用起来也挺简单,

首先import matplotlib.pyplot as plt 导入画图的图。

然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。

接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。

现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。

我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?

假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:

这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令

plt.plot(df['time'], df['ini'])

plt.show()

就能得到如下图:

自己画的是不是很香,哈哈!

然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛

plt.plot(df['time'], df['Ahr999'])

图形如下:

但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。

继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制

fig = plt.figure() # 多图

ax1 = fig.add_subplot(111)

ax1.plot(df['time'], df['ini'], label="BTC price")  # 绘制第一个图比特币价格

ax1.set_ylabel('BTC price') # 加上标签

# 第二个直接对称就行了

ax2 = ax1.twinx()# 在右边增加一个Y轴

ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")  # 绘制第二个图Ahr999指数,红色

ax2.set_ylim([0, 50])# 设定第二个Y轴范围

ax2.set_ylabel('ahr999')

plt.grid(color="k", linestyle=":")# 网格

fig.legend(loc="center")#图例

plt.show()

跑起来看看效果,虽然丑了点,但终于跑通了。

这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。

有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。

Python使用matplotlib做出的图,怎么输出高清的图像

Matplotlib

是一个由 John Hunter 等开发的,用以绘制二维图形的 Python 模块。它利用了 Python 下的数值计算模块 Numeric

及 Numarray,克隆了许多 Matlab 中的函数, 用以帮助用户轻松地获得高质量的二维图形。


分享标题:python误差棒图函数,python 误差棒
当前URL:http://bzwzjz.com/article/heohio.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站设计 网站设计公司 手机网站制作设计 成都网站建设公司 网站制作 高端网站设计推广 网站建设改版 网站建设 成都网站制作 手机网站设计 成都网站建设 成都网站制作 高端定制网站设计 四川成都网站设计 企业网站设计 网站建设 温江网站设计 成都网站建设 成都网站建设公司 网站制作 广安网站设计 成都网站设计