数据库是一组信息的集合,以便可以方便地访问、管理和更新,常用数据库有:1、关系型数据库;2、分布式数据库;3、云数据库;4、NoSQL数据库;5、面向对象的数据库;6、图形数据库。
长顺网站制作公司哪家好,找创新互联建站!从网页设计、网站建设、微信开发、APP开发、自适应网站建设等网站项目制作,到程序开发,运营维护。创新互联建站从2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联建站。
计算机数据库通常包含数据记录或文件的聚合,例如销售事务、产品目录和库存以及客户配置文件。
通常,数据库管理器为用户提供了控制读写访问、指定报表生成和分析使用情况的能力。有些数据库提供ACID(原子性、一致性、隔离性和持久性)遵从性,以确保数据的一致性和事务的完整性。
数据库普遍存在于大型主机系统中,但也存在于较小的分布式工作站和中端系统中,如IBM的as /400和个人计算机。
数据库的演变
数据库从1960年代开始发展,从层次数据库和网络数据库开始,到1980年代的面向对象数据库,再到今天的SQL和NoSQL数据库和云数据库。
一种观点认为,数据库可以按照内容类型分类:书目、全文、数字和图像。在计算中,数据库有时根据其组织方法进行分类。有许多不同类型的数据库,从最流行的方法关系数据库到分布式数据库、云数据库或NoSQL数据库。
常用数据库:
1、关系型数据库
关系型数据库是由IBM的E.F. Codd于1970年发明的,它是一个表格数据库,其中定义了数据,因此可以以多种不同的方式对其进行重组和访问。
关系数据库由一组表组成,其中的数据属于预定义的类别。每个表在一个列中至少有一个数据类别,并且每一行对于列中定义的类别都有一个特定的数据实例。
结构化查询语言(SQL)是关系数据库的标准用户和应用程序接口。关系数据库易于扩展,并且可以在原始数据库创建之后添加新的数据类别,而不需要修改所有现有应用程序。
2、分布式数据库
分布式数据库是一种数据库,其中部分数据库存储在多个物理位置,处理在网络中的不同点之间分散或复制。
分布式数据库可以是同构的,也可以是异构的。同构分布式数据库系统中的所有物理位置都具有相同的底层硬件,并运行相同的操作系统和数据库应用程序。异构分布式数据库中的硬件、操作系统或数据库应用程序在每个位置上可能是不同的。
3、云数据库
云数据库是针对虚拟化环境(混合云、公共云或私有云)优化或构建的数据库。云数据库提供了一些好处,比如可以按每次使用支付存储容量和带宽的费用,还可以根据需要提供可伸缩性和高可用性。
云数据库还为企业提供了在软件即服务部署中支持业务应用程序的机会。
4、NoSQL数据库
NoSQL数据库对于大型分布式数据集非常有用。
NoSQL数据库对于关系数据库无法解决的大数据性能问题非常有效。当组织必须分析大量非结构化数据或存储在云中多个虚拟服务器上的数据时,它们是最有效的。
5、面向对象的数据库
使用面向对象编程语言创建的项通常存储在关系数据库中,但是面向对象数据库非常适合于这些项。
面向对象的数据库是围绕对象(而不是操作)和数据(而不是逻辑)组织的。例如,关系数据库中的多媒体记录可以是可定义的数据对象,而不是字母数字值。
6、图形数据库
面向图形的数据库是一种NoSQL数据库,它使用图形理论存储、映射和查询关系。图数据库基本上是节点和边的集合,其中每个节点表示一个实体,每个边表示节点之间的连接。
图形数据库在分析互连方面越来越受欢迎。例如,公司可以使用图形数据库从社交媒体中挖掘关于客户的数据。
访问数据库:DBMS和RDBMS
数据库管理系统(DBMS)是一种允许您定义、操作、检索和管理存储在数据库中的数据的软件。
关系数据库管理系统(RDBMS)是上世纪70年代开发的一种基于关系模型的数据库管理软件,目前仍然是最流行的数据库管理方法。
Microsoft SQL Server、Oracle数据库、IBM DB2和MySQL是企业用户最常用的RDBMS产品。DBMS技术始于20世纪60年代,支持分层数据库,包括IBM的信息管理系统和CA的集成数据库管理系统。一个关系数据库管理系统(RDBMS)是一种数据库管理软件是在20世纪70年代开发的,基于关系模式,仍然是管理数据库的最普遍的方式。
希望能帮助你还请及时采纳谢谢
Hadoop
文件系统:文件系统是用来存储和管理文件,并且提供文件的查询、增加、删除等操作。
直观上的体验:在shell窗口输入 ls 命令,就可以看到当前目录下的文件夹、文件。
文件存储在哪里?硬盘
一台只有250G硬盘的电脑,如果需要存储500G的文件可以怎么办?先将电脑硬盘扩容至少250G,再将文件分割成多块,放到多块硬盘上储存。
通过 hdfs dfs -ls 命令可以查看分布式文件系统中的文件,就像本地的ls命令一样。
HDFS在客户端上提供了查询、新增和删除的指令,可以实现将分布在多台机器上的文件系统进行统一的管理。
在分布式文件系统中,一个大文件会被切分成块,分别存储到几台机器上。结合上文中提到的那个存储500G大文件的那个例子,这500G的文件会按照一定的大小被切分成若干块,然后分别存储在若干台机器上,然后提供统一的操作接口。
看到这里,不少人可能会觉得,分布式文件系统不过如此,很简单嘛。事实真的是这样的么?
潜在问题
假如我有一个1000台机器组成的分布式系统,一台机器每天出现故障的概率是0.1%,那么整个系统每天出现故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一个容错机制来保证发生差错时文件依然可以读出,这里暂时先不展开介绍。
如果要存储PB级或者EB级的数据,成千上万台机器组成的集群是很常见的,所以说分布式系统比单机系统要复杂得多呀。
这是一张HDFS的架构简图:
client通过nameNode了解数据在哪些DataNode上,从而发起查询。此外,不仅是查询文件,写入文件的时候也是先去请教NameNode,看看应该往哪个DateNode中去写。
为了某一份数据只写入到一个Datanode中,而这个Datanode因为某些原因出错无法读取的问题,需要通过冗余备份的方式来进行容错处理。因此,HDFS在写入一个数据块的时候,不会仅仅写入一个DataNode,而是会写入到多个DataNode中,这样,如果其中一个DataNode坏了,还可以从其余的DataNode中拿到数据,保证了数据不丢失。
实际上,每个数据块在HDFS上都会保存多份,保存在不同的DataNode上。这种是牺牲一定存储空间换取可靠性的做法。
接下来我们来看一下完整的文件写入的流程:
大文件要写入HDFS,client端根据配置将大文件分成固定大小的块,然后再上传到HDFS。
读取文件的流程:
1、client询问NameNode,我要读取某个路径下的文件,麻烦告诉我这个文件都在哪些DataNode上?
2、NameNode回复client,这个路径下的文件被切成了3块,分别在DataNode1、DataNode3和DataNode4上
3、client去找DataNode1、DataNode3和DataNode4,拿到3个文件块,通过stream读取并且整合起来
文件写入的流程:
1、client先将文件分块,然后询问NameNode,我要写入一个文件到某个路径下,文件有3块,应该怎么写?
2、NameNode回复client,可以分别写到DataNode1、DataNode2、DataNode3、DataNode4上,记住,每个块重复写3份,总共是9份
3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把数据写到他们上面
出于容错的考虑,每个数据块有3个备份,但是3个备份快都直接由client端直接写入势必会带来client端过重的写入压力,这个点是否有更好的解决方案呢?回忆一下mysql主备之间是通过binlog文件进行同步的,HDFS当然也可以借鉴这个思想,数据其实只需要写入到一个datanode上,然后由datanode之间相互进行备份同步,减少了client端的写入压力,那么至于是一个datanode写入成功即成功,还是需要所有的参与备份的datanode返回写入成功才算成功,是可靠性配置的策略,当然这个设置会影响到数据写入的吞吐率,我们可以看到可靠性和效率永远是“鱼和熊掌不可兼得”的。
潜在问题
NameNode确实会回放editlog,但是不是每次都从头回放,它会先加载一个fsimage,这个文件是之前某一个时刻整个NameNode的文件元数据的内存快照,然后再在这个基础上回放editlog,完成后,会清空editlog,再把当前文件元数据的内存状态写入fsimage,方便下一次加载。
这样,全量回放就变成了增量回放,但是如果NameNode长时间未重启过,editlog依然会比较大,恢复的时间依然比较长,这个问题怎么解呢?
SecondNameNode是一个NameNode内的定时任务线程,它会定期地将editlog写入fsimage,然后情况原来的editlog,从而保证editlog的文件大小维持在一定大小。
NameNode挂了, SecondNameNode并不能替代NameNode,所以如果集群中只有一个NameNode,它挂了,整个系统就挂了。hadoop2.x之前,整个集群只能有一个NameNode,是有可能发生单点故障的,所以hadoop1.x有本身的不稳定性。但是hadoop2.x之后,我们可以在集群中配置多个NameNode,就不会有这个问题了,但是配置多个NameNode,需要注意的地方就更多了,系统就更加复杂了。
俗话说“一山不容二虎”,两个NameNode只能有一个是活跃状态active,另一个是备份状态standby,我们看一下两个NameNode的架构图。
两个NameNode通过JournalNode实现同步editlog,保持状态一致可以相互替换。
因为active的NameNode挂了之后,standby的NameNode要马上接替它,所以它们的数据要时刻保持一致,在写入数据的时候,两个NameNode内存中都要记录数据的元信息,并保持一致。这个JournalNode就是用来在两个NameNode中同步数据的,并且standby NameNode实现了SecondNameNode的功能。
进行数据同步操作的过程如下:
active NameNode有操作之后,它的editlog会被记录到JournalNode中,standby NameNode会从JournalNode中读取到变化并进行同步,同时standby NameNode会监听记录的变化。这样做的话就是实时同步了,并且standby NameNode就实现了SecondNameNode的功能。
优点:
缺点:
新一版的NoSQL Manager for MongoDB已经不是把文件夹和注册表删了就可以搞定的了,新版解决办法如下:
其实很简单!
1.卸载NoSQL Manager
2. 删除注册表节点
HKEY_CURRENT_USER\Software\NoSQL Manager Group
3. 删除应用数据目录
C:\ProgramData\NoSQL Manager Group
4.重新安装
一定要卸载完再安装!
实际上为了更好的描述实体之间的关系,我们要是再继续使用Redis的话,是不是感觉实体之间的关系不够那么的明显,虽然也是属于NoSQL的一种,但是相对来说,Redis,表现实体之间的关系就没有那么清晰了,为了更好的描述实体之间的关系,就会使用图形数据库来进行了,那么今天阿粉介绍的,就是一个图形化的数据可,Neo4J。
Neo4j是一个世界领先的开源的基于图的数据库。 它是使用Java语言完全开发的。那么什么是图数据库呢?图数据库是以图结构的形式存储数据的数据库。 它以节点,关系和属性的形式存储应用程序的数据。正如RDBMS以表的“行,列”的形式存储数据,GDBMS以图的形式存储数据。
RDBMS与图数据库的区别
1.Tables 表Graphs 图表
2.Rows 行Nodes 节点
3.Columns and Data 列和数据 Properties and its values属性及其值
4.Constraints 约束Relationships 关系
5.Joins 加入Traversal 遍历
说完了图形数据库,我们就来看看这个 Neo4J 数据库吧
neo4j是用Java语言编写的图形数据库,运行时需要启动JVM进程,因此,需安装JAVA SE的JDK。关于 Java 怎么安装,我就不用再多废话了吧,到时候别忘了检测一下 Java 的版本就好了, java -version
接下来我们就是要进行一个安装了,我们先去官网,下载社区版,企业版要收费的,注意哈。
官网地址
下载完成,直接开始安装,傻瓜式操作即可。
Neo4j应用程序有如下主要的目录结构:
注意,如果你使用的是Zip的压缩包来进行的使用的话,那么你就需要注意一些地方,比如你如果是用 Zip 的包解压之后,并且想要通过 bat 的命令启动,直接在目录下进行 cmd ,然后 neo4j.bat ,这时候可能会出现一个问题,就是版本可能会出现问题,你如果下载使用的是最新版的 Neo4J ,那么就可能会让你使用 JDK 11 ,而阿粉就是踩过了这个大坑之后,才发现,bat 闪退的原因。
这样就是说明我们的 JDk 的版本对应的和 Neo4J 需要的 JDK 是不匹配的,我们就需要换一下我们的 JDK 了。把他换成 JDK 11 就好了,再次启动。
这时候,我们就直接访问 localhost:7474 的端口,直接就能看到如下的画面, 1.jpg
刚进入的时候可能需要大家输入帐号密码,默认的帐号密码就是,neo4j 修改成你想要的就行了。
这样登录进去我们就能开始正式学习 Neo4J 的所有内容了。
Neo4j - CQL语法
我们在讲语法之前首先我们先得看看 Neo4J 的构建模块,不然之后的查询都是无意义的。
Neo4j图数据库主要有以下构建块 -
节点是图表的基本单位。 它包含具有键值对的属性,如下所示
属性是用于描述图节点和关系的键值对
关系是图形数据库的另一个主要构建块。 它连接两个节点,如下所示。
Label将一个公共名称与一组节点或关系相关联。 节点或关系可以包含一个或多个标签。 我们可以为现有节点或关系创建新标签。 我们可以从现有节点或关系中删除现有标签。
Neo4j数据浏览器 一旦我们安装Neo4j,我们可以访问Neo4j数据浏览器使用以下URL
http:// localhost:7474 / browser /
CREATE 语法
CREATE ( : )
它是我们要创建的节点名称。
它是一个节点标签名称
我们可以创建一个节点,然后给他安排上一个标签
CREATE (emp:Employee)
当我们看到
Added 1 label, created 1 node, completed after 74 ms.
这就创建成功了,
那么怎么查看呢?
MATCH语法
MATCH ( : ) return xxx
是这个样子的
但是看到里面竟然没有东西,就相当于是一个空的对象,那是不是就应该给里面放入属性的操作呢?没错,肯定有
CREATE (emp:Employee{ id : 1001 ,name :"lucy", age : 10})
Added 1 label, created 1 node, set 3 properties, completed after 163 ms. 创建成功。
我们再次查看就能看到
如果我们想只要其中的一些对象的属性,而不是全部属性,那应该怎么操作呢?
RETURN语法
RETURN 可以返回的是一个对象,也可以是对象中的属性,比如:
结果就是下面这个样子的,大家看一下,是不是感觉还是挺好用的。
** WHERE语法**
WHERE
为什么在前面的位置阿粉说,CQL 是和 SQL 类型的,这完全是因为很多东西和 SQL 是类似的。
结果如下:
相同的还有
布尔运算符 描述 AND 和 OR 或者 NOT 非 XOR 异或
比较运算符 描述 = “等于”运算符 “不等于”运算符 “小于”运算符 “大于”运算符 = “小于或等于”运算符。 = “大于或等于”运算符。
DELETE语法
删除语法必然是有的,因为有创建,肯定有删除。
DELETE
但是这个命令也不是单独使用的哈,
MATCH (e: Employee) DELETE e
直接删除成功。
基础的东西讲完了,阿粉就得说说这个比较重要的内容了,关系,
我们之前创建节点的时候,那叫一个简单舒适加愉快,但是创建关系就比较复杂了,因为需要考虑如何匹配到有关系的两个节点,以及关系本身的属性如何设置。这里我们就简单学一下如何建立节点之间的关系。
由于Neo4j CQL语法是以人类可读的格式。 Neo4j CQL也使用类似的箭头标记来创建两个节点之间的关系。
每个关系( )包含两个节点
在Neo4j中,两个节点之间的关系是有方向性的。 它们是单向或双向的。
如果我们尝试创建一个没有任何方向的关系,那么就会报错。
关系创建语法
CREATE ( )-[ ]-( )
我们这里直接使用创建新的节点来创建关系。
提示创建成功
这里关系名称是“CONTAINS”
关系标签是“contains”。
这么看是看不出有啥关系的,但是,我们可以从另外的一个位置
这样看下来,这个 Neo4J 简单操作是不是就学会了,阿粉接下来的文章中讲怎么使用 Java 来操作 Neo4J 数据库。欢迎大家来观看。