小编这次要给大家分享的是Python自定义聚合函数merge与transform有什么区别,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。
创新互联公司专注于西湖网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供西湖营销型网站建设,西湖网站制作、西湖网页设计、西湖网站官网定制、微信小程序服务,打造西湖网络公司原创品牌,更为您提供西湖网站排名全网营销落地服务。1.自定义聚合函数,结合agg使用
2. 同时使用多个聚合函数
3. 指定某一列使用某些聚合函数
4.merge与transform使用
import pandas as pd import numpy as np np.random.seed(1) dict_data = { 'k1': ['a', 'b', 'c', 'd', 'a', 'b', 'c', 'd'], 'k2': ['A', 'B', 'C', 'D', 'A', 'B', 'C', 'D'], 'data1': np.random.randint(1,10,8), 'data2': np.random.randint(1,10,8) } df = pd.DataFrame(dict_data) print('df=\n',df) df2 = df.groupby('k1').sum() # df2 = df.sum() print("df.groupby('k1').sum()\n",df2) # 使用聚合函数 def cus(df): return df.max()-df.min() # 默认列索引为列名。元组第0个元素‘Max',‘mu_cus'为自定义列名称,第一个元素为聚合函数名称 print("使用聚合函数1\n",df.groupby('k1').agg(['sum',('Max','max'),('mu_cus',cus)])) # 制定某一列使用某个聚合函数, 元组不能用来重命名列名了,元组里面的函数,表示这一列将会执行的聚合函数 print("使用聚合函数2\n",df.groupby('k1').agg({'data1':('min', 'max'),'data2':'min'})) df3 = df.groupby('k1').sum().add_prefix('sum_') print('df3=\n',df3) # 如果不使用add_prefix('sum_'),那么在merge时候data1余data2列名相同,会被自动重命名 print('merge=\n',pd.merge(df,df3,on='k1')) transform_df = df.groupby('k1').transform(np.sum).add_prefix('sum_') print(transform_df) df[transform_df.columns]=transform_df # transform_df.columns Index(['sum_k2', 'sum_data1', 'sum_data2'], dtype='object') # df[transform_df.columns.values]=transform_df #等价,# transform_df.columns.values ['sum_k2', 'sum_data1', 'sum_data2'] print(df) exit()
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。