python数组运算函数,python定义数组函数

python如何调用函数中的数组

python调用函数中的数组的方法:

黄山网站建设公司创新互联,黄山网站设计制作,有大型网站制作公司丰富经验。已为黄山上1000+提供企业网站建设服务。企业网站搭建\成都外贸网站制作要多少钱,请找那个售后服务好的黄山做网站的公司定做!

在函数里面使用global定义一个全局变量,然后将数组赋值给这个变量,调用该函数,带有数组的的这个全局变量就可以直接使用了

示例如下:

执行结果如下:

更多Python知识,请关注:Python自学网!!

对Python中数组的几种使用方法总结

对Python中数组的几种使用方法总结

今天小编就为大家分享一篇对Python中数组的几种使用方法总结,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

二维数组的初始化

matirx_done = [[0 for i in range(0, len(matirx))]for j in range(0, len(matirx[0]))]

就将其初始化为一个与matrix相同大小的元素全为 0 的矩阵

数组的多级排序

在数组 idea_collect = [[3, 1, 2], [3, 2, 1], [3, 2, 2], [3, 1, 1]] 中, 先按照第二项排列, 再按照第三项倒序排列 可写为:

idea_collect.sort(key=lambda x: (x[1], -x[2]))

其中, x[1] 代表第二项正序排列, -x[2] 代表第三项倒序排列

排列结果为 [[3, 1, 2], [3, 1, 1], [3, 2, 2], [3, 2, 1]]

在一个 class 中多个函数不传参使用同一个数组

如例所示:

class Partition:

def __init__(self):

self.num_complete = []

def partition(self, num, start, end):

self.num_compelete = num

def partition_core(self):

del self.num_compelete[0]

其中,self.num_compelete就是 class 中两个函数同时可以直接调用的数组, 不过最好先在def __init__中声明这个数组

以上这篇对Python中数组的几种使用方法总结就是小编分享给大家的全部内容了

python数组求和

在数组和矩阵中使用sum: 对数组b和矩阵c,代码b.sum(),np.sum(b),c.sum(),np.sum(c)都能将b、c中的所有元素求和并返回单个数值。

但是对于二维数组b,代码b.sum(axis=0)指定对数组b对每列求和,b.sum(axis=1)是对每行求和,返回的都是一维数组(维度降了一维)。

而对应矩阵c,c.sum(axis=0)和c.sum(axis=1)也能实现对列和行的求和,但是返回结果仍是二维矩阵。

# 定义函数,arr 为数组,n 为数组长度,可作为备用参数,这里没有用到。

def _sum(arr,n):

# 使用内置的 sum 函数计算。

return(sum(arr)) 

# 调用函数

arr=[]

# 数组元素

arr = [12, 3, 4, 15]

# 计算数组元素的长度

n = len(arr)

ans = _sum(arr,n)

# 输出结果

print ('数组元素之和为',ans)

扩展资料:

python数组使用:

python 数组支持所有list操作,包括 .pop、.insert 和 .extend。另外,数组还提供从文件,读取和存入文件的更快的方法,列如如 .frombytes 和 .tofile,如下所示我们定义一个数组。

from array import arrayarr=array('d',(a for a in range(5)))print(arr)。

arr=array('d',(a for a in range(5))) 从这个代码中可以看出,一个数组的定义需要传入的不只是值还有类型。

可以是(must be c, b, B, u, h, H, i, I, l, L, f or d)。

Python中numpy.array函数有啥作用呢?

答: 把我们定义的普通数组转化为Numpy中的array类型,这样做的好处就在于可以使用该类型定义的多种数组方法,比如排序取其中的最大值或者最小值。我们就不需要从头开始实现,直接调用相关的API就行。


分享题目:python数组运算函数,python定义数组函数
文章URL:http://bzwzjz.com/article/dsgpeep.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 品牌网站建设 教育网站设计方案 成都网站建设 成都网站设计公司 成都网站制作 成都网站建设 专业网站建设 网站建设方案 网站制作公司 成都网站建设 广安网站设计 网站制作 手机网站建设 成都网站建设公司 成都品牌网站建设 成都定制网站建设 成都网站建设 成都网站制作 古蔺网站建设 成都网站制作 手机网站制作 成都网站建设公司