postgresql行列的简单介绍

请教postgreSQL 数据行列变化显示

你是命令行里面显示的吧?那个好像就那样了,没见过postgre还有分行显示的函数~你可以到这里去查帮助手册:PostgreSQL 8.1 中文文档

萨嘎网站建设公司创新互联,萨嘎网站设计制作,有大型网站制作公司丰富经验。已为萨嘎数千家提供企业网站建设服务。企业网站搭建\成都外贸网站建设要多少钱,请找那个售后服务好的萨嘎做网站的公司定做!

如何快速看懂navicat for PostgreSQL 模式和表

解析 PostgreSQL 模式和 PostgreSQL 表

PostgreSQL 模式包含有名的对象(表、数据类型、函数及运算符),其名可能会和其他模式的现有对象相同。表是由行和列,以及行列相交的栏位组成,每一个在行中的栏位是和该行的其他栏位含蓄地相关。

PostgreSQL 模式

PostgreSQL 模式基本上是一个名空间:它包含有名的对象(表、数据类型、函数及运算符),其名可能会和其他模式的现有对象相同。

模式名:创建的模式名。名不能以 pg_ 开头,因为这些名是保留给系统模式。

拥有者:拥有模式的用户名。如果省略,默认为运行命令的用户。

PostgreSQL 表

关联式数据库使用表来保存数据,全部数据操作都在表上完成或生成另一个表作为结果。表是由行和列,以及行列相交的栏位组成。从一般的角度来看,列在一个表中描述数据的名和类型;行在一个表中代表列组成的记录,从左至右由相应列的名和类型描述。每一个在行中的栏位是和该行的其他栏位含蓄地相关。点击“表”按钮即可打开表的对象列表。

当要打开有图形栏位的表时,在表上右击并在弹出菜单中选择“打开表(快速)”,用更快的性能打开图形表,BLOB 栏位(图片)将不会被加载直到点击单元格。如果需要在打开表时 Navicat 加载全部的图片需要点击“打开表”。

可以创建一个表快捷方式,在对象列表中的表上右击并在弹出菜单中选择“创建打开表快捷方式”。这个选项是用来提供一个打开表的便捷方式,可以直接输入数据而无需打开主 Navicat。

要清空一个表,在已选择的表上右击并在弹出菜单中选择“清空表”。此选项仅适用于清除全部现有记录而不重设自动递增值。如果需要在清除表的同时重设自动递增值,请使用“截断表”。

数据库的选择什么样的数据库简单实用?

1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。

2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。

3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。

4.数据量较小,比如十万以下,sqlite、access都可以。

上面是基于单表操作的数据量,你看着选。

简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:

小巧灵活sqlite

这是基于c语言开发的一个轻量级关系型数据库,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种编程语言都提供了丰富的API接口, java、 python、c#等都可轻松操作,如果你存储数据量不多,只是本地简单的操作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:

专业强大mysql

这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、存储过程等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:

免费开源postgresql

这是加州大学计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:

当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

最符合初学者理解和入门的是Access,因为它和Excel本来就是一个套件,相互转化容易,复制粘贴即可,非常好理解库、表、字段、键的概念。

如果数据量不大,强烈推荐试试Filemaker,脚本化编程,自由定制输入界面、工作流程,非常便捷高效。

最近杀出来的airtable,更是简单高效,界面美观,操作与电子表格相当,发展势头也非常迅猛。

二者侧重点有所不同,用户可根据需要选择

作为一个软件开发人员,长期需要和数据库打交道,个人更加青睐于MySQL。虽然可能基于你的Excel原因,有些人会建议你使用Access数据库,但是基于我个人的 意见,我并不建议你那样做。采用MySql的具体理由如下:

1.MySQL具有普遍性,在国内的环境中,绝大多数的互联网企业采用的是MySQL。有了广大的用户基础后,针对于各种问题网上也能更好地找到解决方案。

2.MySQL相对于Oracle而言,更加轻量化,针对于从Excel量级的数据,没必要使用Oracle。同时MySQL是完全免费的,不用担心版权及费用问题,无论对个人还是对预算有限的企业而言都是很好的选择。

3.MySQL高度兼容标准SQL,这对于以后迁移到其他数据库而言,也能很大程度地降低学习成本。

希望我的回答能够对你有所帮助!!![耶][耶][耶]

Excel办公确实便利,可以做一些简单的数据分析,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临电脑死机,数据丢失等问题。

遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!

现在, 我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?

MySQL数据库,90%的企业都会选择它

数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。

如果你只是上班打卡,用SQL server就可以了;

如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;

不过90%的企业或个人,首选数据库都是MySQL数据库。

为什么这么说?

因为,它集 低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码 等特性于一身,所以在金融、财务、网站、 数据处理 等应用领域,它占据着独一无二的优势。

这也是几乎所有企业都选择它,来存储数据的原因。

加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库操作的工具。

因而,MySQL尤其受个人,以及中小企业的推崇。

虽然MySQL数据库简单易用,但我还是不会部署该怎么办?

别担心,现在市面上已经出现了,一种自带数据库的新型办公软件。

比如说,云表企业应用平台,一款兼容excel功能,但功能更为强大的办公软件,它就内嵌了MySQL数据库。 (文末有免费获取方式)

云表内嵌的MySQL数据库,有何优点?

1. 性能更加优化,更加兼容系统。因为云表的研发人员,时刻更新维护MySQL数据库。

2. 省去自己手动部署的麻烦。但如果你熟悉部署数据库,想把数据库改成Oracle或SQL server等数据库,也可以设置。(不过,我建议IT小白还是 “拿来即用” 就好)

3. 快速实时计算。数据分析实时交互,完全满足管理决策中的临时性分析,多变的业务需求,以及频繁的结果刷新。

4. 通过自带的内存计算引擎,无需事先建立CUBE,IT部门将告别报表延时报表分析,亿级数据秒级响应。

内嵌的MySQL数据库是否可靠

云表不仅是一款办公软件,同时还是一款开发工具。

通过它,你将解决以下问题:

复杂的数据运算,精确到行列的权限管控,以及工作流,海量用户同时在线办公,数据透视,制作像销售单,洽谈合同等表单报表,一份制作,即可重复录用......

你还可以通过它,与电子称、地磅等进行对接,与用友金蝶等三方系统集成,生成条形码,扫码出入库,生成移动端APP...... 基本上业务所需的功能,你都可以放心交给它做。

它最大的亮点就是,你可以 用使用excel的手法,用它来开发业务应用。

而且,可视化的 拖拉拽 之后,开发出来的ERP、WMS、OA、进销存等业务应用,还秉承了MySQL数据库增删改查的功能特性。

没错,用云表开发出来的业务应用,是允许二次开发的,而且功能可以随时增删改查,轻松满足大集团精细化的数据控制需求。

不过,大家最关心的应该是数据安全问题吧。

数据存放在云表内嵌的MySQL数据库,是安全不丢失的,它提供了多种数据存储的方式,本地部署,云端部署,混合部署,任君挑选!

正因如此,像 恒逸石化、许继电气、航天科工委、中铁、中冶、云南小松 等大型集团,才鼓励内部员工去学习云表。

篇幅所限,只说到这里,说太多你也不会看。

免费 的软获取方式在下方:

数据库的用处可大着呢,不仅可以实现数据共享,减少数据冗余度,还能实现对数据的集中控制,保持数据的一致性和可维护性。选取简单易用的数据库,你有什么好的建议呢,留言让我们看到噢!

题主强调了简单易用。所以推荐最简单三个。

1.Access。

2.Excel。

3.飞书文档、腾讯文档、石墨文档等的表格。

如果要做分析,数据量才比较大,建议Access,还是专业的更好一些。网上教程也很多,比较容易学。而且建议用早一点的版本,比如2003或者2007,Access这些年微软一直想从office里去掉,奈何用的人还是很多,所以不敢去掉,但是采取了一种比较恶心的方法让用户放弃,就是每发布一个新版本,就去掉一些好用的功能,所以说Access是越早的功能越强。

还一个推荐就是Sql Server Express版本,是SQL Server的免费版本,不要钱,基本功能都有,要比sqllite等强大的多

这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面操作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。

个人使用数据库的话,只存数据不做分析,SQLite就足够了。

POSTGRE数据库某字段中的值是逗号分隔要分开转成行,并且其他列也跟随,格式如图

postgresql 好像没有提供像oracle那样的行列转换函数,估计你需要通过程序来实现了

python常用到哪些库?

Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。

下面我们就来看一下python中常用到的库:

数值计算库:

1. NumPy

支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。

2. SciPy

在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。

3. Pandas

基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。

数据可视化库:

4. Matplotlib

第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。

5. Seaborn

利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。

6. ggplot

基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。

7. Bokeh

跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。

8. Plotly

可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。

9. pygal

与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。

10. geoplotlib

用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。

11. missingno

用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。

web开发库:

12. Django

一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。

13. Socket

一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。

14. Flask

一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。

15. Twisted

一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。

数据库管理:

16. MySQL-python

又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2.x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。

17. mysqlclient

完全兼容MySQLdb,同时支持Python 3.x,是Django ORM的依赖工具,可使用原生SQL来操作数据库,安装方式与MySQLdb一致。

18. PyMySQL

纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。

19. SQLAlchemy

一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。

自动化运维:

20. jumpsever跳板机

一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。

支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。

21. Magedu分布式监控系统

一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。

22. Magedu的CMDB

一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。

23. 任务调度系统

一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。

24. Python运维流程系统

一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。

GUI编程:

25. Tkinter

一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 8.0的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。

26. wxPython

一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。

27. PyQt

一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要操作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。

28. PySide

一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。

更多Python知识请关注Python自学网。


文章名称:postgresql行列的简单介绍
本文URL:http://bzwzjz.com/article/dscshje.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站设计 成都网站制作 成都网站建设 泸州网站建设 企业手机网站建设 成都定制网站建设 成都网站设计 网站建设方案 手机网站制作 成都网站设计公司 网站建设公司 手机网站建设 企业网站建设 成都网站设计 成都网站设计 营销网站建设 成都网站建设 高端网站设计 成都品牌网站建设 成都网站建设公司 网站制作公司 专业网站设计