使用python怎么比较2张图片的相似度-创新互联

使用python怎么比较2张图片的相似度?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

成都创新互联提供高防主机、云服务器、香港服务器、托管服务器

具体如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import cv2
import numpy as np
 
#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#Hash值对比
def cmpHash(hash2,hash3):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash2)!=len(hash3):
    return -1
  #遍历判断
  for i in range(len(hash2)):
    #不相等则n计数+1,n最终为相似度
    if hash2[i]!=hash3[i]:
      n=n+1
  return n
 
img1=cv2.imread('A.png')
img2=cv2.imread('B.png')
hash2= aHash(img1)
hash3= aHash(img2)
print(hash2)
print(hash3)
n=cmpHash(hash2,hash3)
print '均值哈希算法相似度:'+ str(n)
 
hash2= dHash(img1)
hash3= dHash(img2)
print(hash2)
print(hash3)
n=cmpHash(hash2,hash3)
print '差值哈希算法相似度:'+ str(n)

讲解

相似图像搜索的哈希算法有三种:

  • 均值哈希算法

  • 差值哈希算法

  • 感知哈希算法

  • 均值哈希算法

步骤

缩放:图片缩放为8*8,保留结构,出去细节。
灰度化:转换为256阶灰度图。
求平均值:计算灰度图所有像素的平均值。
比较:像素值大于平均值记作1,相反记作0,总共64位。
生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

代码实现: 

#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'      
  return hash_str

差值哈希算法

差值哈希算法前期和后期基本相同,只有中间比较hash有变化。

步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str

感知哈希算法

感知哈希算法可以参考
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三)
讲的很详细了。

Hash值对比

由于返回值为str字符串,所以直接遍历字符串进行比对。

#Hash值对比
def cmpHash(hash2,hash3):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash2)!=len(hash3):
    return -1
  #遍历判断
  for i in range(len(hash2)):
    #不相等则n计数+1,n最终为相似度
    if hash2[i]!=hash3[i]:
      n=n+1
  return n

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联成都网站设计公司行业资讯频道,感谢您对创新互联成都网站设计公司的支持。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:使用python怎么比较2张图片的相似度-创新互联
本文链接:http://bzwzjz.com/article/dpeeop.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 定制网站制作 重庆网站建设 重庆外贸网站建设 手机网站制作 重庆企业网站建设 网站制作 移动网站建设 LED网站设计方案 成都定制网站建设 重庆网站建设 教育网站设计方案 高端网站设计 成都定制网站建设 品牌网站建设 营销型网站建设 企业网站设计 营销型网站建设 成都网站制作 成都商城网站建设 成都网站建设 成都网站建设 营销网站建设