mysql大数据怎么处理 大数据mysql如何处理

mysql 数据量超过百万后怎么处理

我们经常会遇到操作一张大表,发现操作时间过长或影响在线业务了,想要回退大表操作的场景。在我们停止大表操作之后,等待回滚是一个很漫长的过程,尽管你可能对知道一些缩短时间的方法,处于对生产环境数据完整性的敬畏,也会选择不做介入。最终选择不作为的原因大多源于对操作影响的不确定性。实践出真知,下面针对两种主要提升事务回滚速度的方式进行验证,一种是提升操作可用内存空间,一种是通过停实例,禁用 redo 回滚方式进行进行验证。

创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站制作、做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的河津网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

仔细阅读过官方手册的同学,一定留意到了对于提升大事务回滚效率,官方提供了两种方法:一是增加 innodb_buffer_pool_size 参数大小,二是合理利用 innodb_force_recovery=3 参数,跳过事务回滚过程。第一种方式比较温和,innodb_buffer_pool_size 参数是可以动态调整的,可行性也较高。第二种方式相较之下较暴力,但效果较好。

两种方式各有自己的优点,第一种方式对线上业务系统影响较小,不会中断在线业务。第二种方式效果更显著,会短暂影响业务连续,回滚所有没有提交的事务。

用MySQL管理大数据

By the end of this course,you will be able to

1.Describe the structure of relational databases,

2.Interpret and create entity relationship diagrams and relational schamas that describe the contents of specific criteria, and retrieve such data from MySQL an teradata databases that contain over one million rows of data.

3.Execute practices that limit the impact of your queries on other coworkers.

4. Summarize rows of data using aggregate function and segment aggregations according to specified variables.

5. Combine and manipulate data from multiple tables, across a database.

6.Retrieve records and compute calculations that are dependent on dynamic data features. And translate data analysis questions into SQL queries.

MySQL数据库千万级数据处理?

也就是A表中保留B表中存在的数据,可以通过筛选把这样的数据放在第三个表

只要索引合理,数据量不算大

祝好运,望采纳。


当前标题:mysql大数据怎么处理 大数据mysql如何处理
文章URL:http://bzwzjz.com/article/dopcjpo.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站建设 成都网站设计公司 网站设计公司 商城网站建设 成都网站制作 营销型网站建设 成都h5网站建设 成都网站设计 自适应网站设计 高端品牌网站建设 高端定制网站设计 成都网站建设 成都网站制作 手机网站制作 重庆网站建设 公司网站建设 网站制作公司 成都网站建设 响应式网站设计 成都网站制作 定制网站制作 成都网站制作