关于Python四个高阶函数的信息

python 高阶函数什么意思

变量可以指向函数,函数的参数可以接收变量,那么函数可以接收另一个函数作为参数,这种函数称为高阶函数。

乐清网站建设公司成都创新互联公司,乐清网站设计制作,有大型网站制作公司丰富经验。已为乐清1000+提供企业网站建设服务。企业网站搭建\外贸网站制作要多少钱,请找那个售后服务好的乐清做网站的公司定做!

1、把函数作为实参;2、把函数作为返回值。

python高阶函数有哪些?

map函数

map()是python内置的高阶函数,它接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并且把结果作为新的列表返回。

filter函数

filter()同样也是接收一个函数和一个序列,和map()不同的是,filter函数把传入的函数依次作用于每个元素,然后返回返回值是True的元素。

reduce函数

reduce()把一个函数作用到一个序列上,这个函数必须接收两个参数,reduce把结果和序列的下一个元素做累积计算。

lambda函数

lambda()有时候传参数时不需要显示自定义的函数,直接传入匿名函数更方便;冒号前面的X,y表示函数参数,匿名函数不需要担心函数名的冲突,匿名函数也是一个函数对象,可以吧匿名函数赋值给一个变量,再利用变量来调用函数,匿名函数也可以作为返回值返回。

sorted函数

sorted()作为python内置高阶函数之一,其功能是对序列(列表、元组、字典、集合、字符串)进行排序。

一文读懂Python 高阶函数

将函数作为参数传入,这样的函数称为高阶函数。 函数式编程就是指这种高度抽象的编程范式。

变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。如下所示:

map(fun, lst),将传入的函数变量func作用到lst变量的每个元素中,并将结果组成新的列表返回。

定义一个匿名函数并调用,定义格式如--lambda arg1,arg2…:表达式

reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算。

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。

闭包的定义?闭包本质上就是一个函数

如何创建闭包?

如何使用闭包?典型的使用场景是装饰器的使用。

global与nonlocal的区别:

简单的使用如下:

偏函数主要辅助原函数,作用其实和原函数差不多,不同的是,我们要多次调用原函数的时候,有些参数,我们需要多次手动的去提供值。

而偏函数便可简化这些操作,减少函数调用,主要是将一个或多个参数预先赋值,以便函数能用更少的参数进行调用。

我们再来看一下偏函数的定义:

类func = functools.partial(func, *args, **keywords)

我们可以看到,partial 一定接受三个参数,从之前的例子,我们也能大概知道这三个参数的作用。简单介绍下:

总结

本文是对Python 高阶函数相关知识的分享,主题内容总结如下:

python高阶函数有哪些

1、map

map()函数接受两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每一个元素上,并把结果作为新的Iterator返回。

举例,比如我们有一个函数f(x)=x*2,要把这个函数作用在一个list[1, 2, 3, 4, 5, 6, 7, 8,

9]上,就可以用map()实现。

def f(x):

... return x*2

...

r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])

list(r)

[2, 4, 6, 8, 10, 12, 14, 16, 18]

所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x*2,还可以计算任意复杂的函数,比如把这个list所有的数字转为字符串:

list(map(str,[1, 2, 3, 4, 5, 6, 7, 8, 9]))

["1", "2", "3", "4", "5", "6", "7", "8", "9"]

2、reduce

reduce是把一个函数作用在一个序列[x1, x2,

x3……]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累计计算。简单来说,就是先计算x1和x2的结果,再拿结果与x3计算,依次类推。比如说一个序列求和,就可以用reduce实现。

from functools import reduce

def add(x, y):

... return x + y

...

reduce(add, [1, 3, 5, 7, 9])

25

也就是说,假设python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码。

3、filter

用于过滤序列,和map函数类似,filter也接收一个函数和一个序列,不同于map的是,filter把传入的函数依次作用于每一个元素,然后根据返回值是True还是False决定保留还是丢弃该元素,例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):

return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))

# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):

return s and s.strip()

list(filter(not_empty, ["A", "", "B", None, "C", " "]))

# 结果: ["A", "B", "C"]

可见用filter()这个高阶函数,关键在于正确实现一个筛选函数。

4、sorted

无论冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来,Python内置的sorted()函数就可以对list进行排序:

sorted([36, 5, -12, 9, -21])

[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

sorted([36, 5, -12, 9, -21], key=abs)

[5, 9, -12, -21, 36]

Python 高阶函数的使用

1. Python有哪些高阶函数,功能分别是什么

Python有三大高阶函数,分别是 map 、 reduce 、 filter 函数。

2. map高阶函数

map函数有两个参数,第一个参数要求传递一个函数对象,第二个参数要求传递一个可迭代序列。直接看案例

运行结果:

3. reduce高阶函数

reduce高阶函数位于functools模块中,使用前需要先进行导入。reduce高阶函数可以有三个参数,第一个参数要求传递一个函数对象(必传),第二个参数要求传递一个可迭代序列(必传),第三个函数是一个初始值(不必传,可以有默认值)。直接看案例

运行结果:

4. filter高阶函数

filter高阶函数有两个参数,第一个参数是一个函数对象,第二个参数是一个可迭代序列。直接看案例

运行结果:

Python 之内置函数:filter、map、reduce、zip、enumerate

这几个函数在 Python 里面被称为高阶函数,本文主要学习它们的用法。

filter 函数原型如下:

第一个参数是判断函数(返回结果需要是 True 或者 False),第二个为序列,该函数将对 iterable 序列依次执行 function(item) 操作,返回结果是过滤之后结果组成的序列。

简单记忆:对序列中的元素进行筛选,获取符合条件的序列。

返回结果为: ,使用 list 函数可以输入序列内容。

map 函数原型如下:

该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列;

下述代码是一个简单的测试案例:

上述代码运行完毕,得到的结果是: 。使用 print(list(my_new_list)) 可以得到结果。

map 函数的第一个参数,可以有多个参数,当这种情况出现后,后面的第二个参数需要是多个序列。

map 函数解决的问题:

reduce 函数原型如下:

第一个参数是函数,第二个参数是序列,返回计算结果之后的值。该函数价值在于滚动计算应用于列表中的连续值。

测试代码如下:

最终的结果是 6,如果设置第三个参数为 4,可以运行代码查看结果,最后得到的结论是,第三个参数表示初始值,即累加操作初始的数值。

简单记忆:对序列内所有元素进行累计操作。

zip 函数原型如下:

zip 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

如果各个迭代器的元素个数不一样,则返回列表长度与最短的对象相同,利用星号( * )操作符,可以将元组解压为列表。

测试代码如下:

展示如何利用 * 操作符:

输出结果如下:

简单记忆:zip 的功能是映射多个容器的相似索引,可以方便用于来构造字典。

enumerate 函数原型如下:

参数说明:

该函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

测试代码如下:

返回结果为: 。

本文涉及的函数可以与 lambda 表达式进行结合,能大幅度提高编码效率。最好的学习资料永远是官方手册


文章名称:关于Python四个高阶函数的信息
分享链接:http://bzwzjz.com/article/dooeesh.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 手机网站制作 网站制作 宜宾网站设计 成都网站建设 手机网站建设 梓潼网站设计 成都网站设计 成都网站建设 成都网站设计 企业网站设计 成都网站制作 响应式网站设计 成都网站设计 手机网站设计 成都网站建设 成都网站制作 高端网站设计推广 成都网站建设公司 成都网站设计 网站建设公司 成都网站制作 网站制作公司