小编给大家分享一下Python算法中时间复杂度和空间复杂度的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
成都创新互联公司是一家专业提供桥东企业网站建设,专注与成都网站建设、网站建设、H5建站、小程序制作等业务。10年已为桥东众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。算法复杂度分为时间复杂度和空间复杂度。
其作用:
时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。
(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。
简单来说,时间复杂度指的是语句执行次数,空间复杂度指的是算法所占的存储空间
计算时间复杂度的方法:
用常数1代替运行时间中的所有加法常数
修改后的运行次数函数中,只保留最高阶项
去除最高阶项的系数
时间复杂度
算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况
时间复杂度是用来估计算法运行时间的一个式子(单位),一般来说,时间复杂度高的算法比复杂度低的算法慢
print('Hello world') # O(1) # O(1) print('Hello World') print('Hello Python') print('Hello Algorithm') for i in range(n): # O(n) print('Hello world') for i in range(n): # O(n^2) for j in range(n): print('Hello world') for i in range(n): # O(n^2) print('Hello World') for j in range(n): print('Hello World') for i in range(n): # O(n^2) for j in range(i): print('Hello World') for i in range(n): for j in range(n): for k in range(n): print('Hello World') # O(n^3)
几次循环就是n的几次方的时间复杂度
n = 64 while n > 1: print(n) n = n // 2
26 = 64,log264 = 6,所以循环减半的时间复杂度为O(log2n),即O(logn)
如果是循环减半的过程,时间复杂度为O(logn)或O(log2n)
常见的时间复杂度高低排序:O(1) 空间复杂度 空间复杂度:用来评估算法内存占用大小的一个式子 定义一个或多个变量,空间复杂度都是为1,列表的空间复杂度为列表的长度 以上是“Python算法中时间复杂度和空间复杂度的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!a = 'Python' # 空间复杂度为1
# 空间复杂度为1
a = 'Python'
b = 'PHP'
c = 'Java'
num = [1, 2, 3, 4, 5] # 空间复杂度为5
num = [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]] # 空间复杂度为5*4
num = [[[1, 2], [1, 2]], [[1, 2], [1, 2]] , [[1, 2], [1, 2]]] # 空间复杂度为3*2*2
当前文章:Python算法中时间复杂度和空间复杂度的示例分析-创新互联
本文链接:http://bzwzjz.com/article/dogpoc.html