fft2函数python fft2函数matlab

【20分】python (x, y) 运行.py文件总是出错

Traceback (most recent call last):

成都创新互联为企业级客户提高一站式互联网+设计服务,主要包括成都做网站、成都网站设计、成都外贸网站建设手机APP定制开发、微信小程序、宣传片制作、LOGO设计等,帮助客户快速提升营销能力和企业形象,创新互联各部门都有经验丰富的经验,可以确保每一个作品的质量和创作周期,同时每年都有很多新员工加入,为我们带来大量新的创意。 

File "C:\Users\zhangjq058\workspace\22222222\src\222.py", line 20, in module

x, y = meshgrid(fftfreq(th.shape, dx), fftfreq(th.shape, dx))

File "C:\Python27\lib\site-packages\numpy\fft\helper.py", line 153, in fftfreq

assert isinstance(n,types.IntType) or isinstance(n, integer)

AssertionError

我的code如下:

from pylab import *

from numpy import *

N = 100 #lattice points per axis

dt = 1 #time step

dx = 1 #lattice spacing

t = arange(0, 10000*dt, dt) #time

a = 1 #cofficient

epsilon = 100 #cofficient

M = 1.0 #cofficient

every = 100 #dump an image every

phi_0 = 0.5 #initial mean value of the order parameter

noise = 0.1 #initial amplitude of thermal fluctuations in the order parameter

th = phi_0*ones((N, N)) + noise*(rand(N, N) - 0.5) #initial condition

x, y = meshgrid(fftfreq(th.shape, dx), fftfreq(th.shape, dx))

k2 = (x*x + y*y) #k is a victor in the Fourier space, k2=x^2+y^2

g = lambda th, a: 4*a*th*(1-th)*(1-2*th) #function g

def update(th, dt, a, k2):

return ifft2((fft2(th)-dt*M*k2*fft2(g(th,a)))/(1+2*epsilon*M*dt*k2**2))

for i in range(size(t)):

print t

if mod(i, every)==0:

imshow(abs(th), vmin=0.0, vmax=1.0)

colorbar()

savefig('t'+str(i/every).zfill(3)+'.png', dpi=100)

clf()

th=update(th, dt, a, k2)

python 二维FFT

二维FFT常用在图像处理上,首先要能理解二维FFT的意义,否则很难明白它到底是怎么工作的。

第一列是原图和对应的频率信息,第二列是去除低频部分后,FFT逆变换得到的图像。第三列是去除高频部分后FFT逆变换得到的图像。

从第二列可以看出高频贡献了图像的细节。从白到黑的边界保留了下来。而原图中大片的白与大片的黑在这个图中没什么区别。

第三列中保留了原图中的亮部与灰部,而由黑到白的临界线却很模糊。细小的白线黑线也没能显示。所以低频贡献了图像的明暗。

2.工作原理理解

二维FFT就是先对行做次一维FFT,这样每个元素都是关于行频率信息了,然后再对列做一维FFT,这样每个元素都包含了行和列的频率信息。每个元素都是个复数,取绝对值可得到振幅,从实部与虚部的比值可等到相位,在二维矩阵的位置信息包含了频率大小和方向。方向在一维FFT中是不用考虑的。

FFT2的结果也是正频率从0到高然后负频率从高到0.fftshift()之后会将低频放到中间位置。

第一幅图的频谱是中间一条白线,也就是说许多个正弦波沿横向传播。纵向上没有变化。

第三幅图的频谱是十字形加一条从左下角到右上角的直线。说明原图在横向,纵向都有变化,变化的方向从左下角到右上角。

从中心到频谱图上某一点构成的向量方向就是这个波传播的方向。

正负对称才能消除虚部,这点与一维FFT原理一致。

计算机视觉 图像的傅里叶变换

傅里叶基础

法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被世人铭记的最大的贡献是:他指出任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数(现在称该和为傅里叶级数)。无论函数多么复杂,只要它是周期的,并且满足某些适度的数学条件,都可以用这样的和来表示。即一个复杂的函数可以表示为简单的正弦和余弦之和。甚至非周期函数(单该曲线下的面积是有限的)也可以用正弦和/或许·余弦乘以加权函数的积分来表示。在这种情况下的公式就是傅里叶公式。

比如说我们以制作一个饮料的过程,使用时域的角度来看就是这样:

这里是什么意思呢,就是说一个饮料的制作需要在18点整放1个单位冰糖、3个单位红豆、2个单位的绿豆、4个单位的西红柿,还有1个单位的纯净水。然后再18:01分只需要假如一个单位的纯净水。后面也是一致。而频域是怎么描述这件事的呢?

具体来说就是说他发现了一个规律,就是说这个制作过程,每分钟都要加入冰糖,每两分钟都要加入红豆,每三分钟都要加入一次绿豆…。对于时域角度我们这样描述。

对于频域角度我们这样描述这件事,用直方图表示就是:

如果要考虑更精准的时间精度,我们就要引入相位这个概念。他是一个和时间差有关的一个表述。

这里我们说明一下就是时域和频域的表述是互逆的,对于时域我们是时间为横坐标,振幅为纵坐标。对于频域我们以频率为横坐标,振幅为纵坐标。但是可以看得出来频域的表述更加简单,但是比较抽象,不容易理解。傅里叶说: 任何连续周期信号,可以由一组适当的正弦曲线组合而成。 注意这里是一组而不是一个。比如对于这样的一个图像: f(x)=3 np.sin(0.8 x)+7 np.sin(1/3 x)+2 np.sin(0.2 x)

看上去是毫无规律可言吧,但是它也可以由一组正弦函数组成。

他们是可逆的,想不到吧,乱七八糟的东西也有规律了。但是他们就是这样组合而成的吗?不可能吧,所以这里就是不是同时开始的一组余弦函数,在叠加时要体现开始的时间。也就说组合的函数他们的开始时间是不一样的。在这里分别对应0,2,3.看公式就看出来啦。这里多说一嘴就是说傅里叶变换从时域角度来看,这个世界是动态的!从频域角度来看这个世界是静止的。从数学角度来讲:傅里叶变换将一个任意的周期函数分解成为无穷个正弦函数的和的形式。从物理角度来讲:傅里叶变换实现了将信号从空间域到频率域的转换。

傅里叶基础numpy实现

python是可以实现傅里叶变换的,这里就要说到三剑客的numpy了。对应的函数是: numpy.fft.fft2 返回一个复数数组(complex ndarray)。 numpy.fft.fftshift 这个函数时表示把将零频率分量移到频谱中心。

还要设置频谱的范围 20*np.log(np.abs(fshift)) ,对于图像来说就是255了。

结果是:

原图和频谱图像。

逆傅里叶numpy实现

对于傅里叶的逆操作这里没有什么可说的,就是把频域图像转回原图像。

函数是: numpy.fft.ifft2 ,那么还有一个操作就是把中间移动回去对啊。 numpy.fft.ifftshift 。 iimg = np.abs(逆傅里叶变换结果) 而第二个图就表示低频部分,边缘就表示为高频部分。

首先我们要进行傅里叶变换吧,才可以进行逆操作。结果是:

完全一致!!!


分享题目:fft2函数python fft2函数matlab
链接地址:http://bzwzjz.com/article/dodsgep.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站建设 成都网站建设 成都网站建设 网站建设费用 网站建设公司 网站建设开发 网站建设公司 成都网站制作公司 重庆外贸网站建设 成都网站建设推广 重庆电商网站建设 网站设计 网站制作 成都定制网站建设 成都网站建设公司 成都网站制作 成都网站制作 成都网站制作 成都模版网站建设 手机网站制作设计 LED网站设计方案 盐亭网站设计