这是先序遍历树的代码,什么是先序遍历呢,一种按照根-左子树-右子树的顺序遍历树就是先序遍历。
我们注重客户提出的每个要求,我们充分考虑每一个细节,我们积极的做好成都做网站、网站制作服务,我们努力开拓更好的视野,通过不懈的努力,创新互联赢得了业内的良好声誉,这一切,也不断的激励着我们更好的服务客户。 主要业务:网站建设,网站制作,网站设计,微信小程序开发,网站开发,技术开发实力,DIV+CSS,PHP及ASP,ASP.Net,SQL数据库的技术开发工程师。
CBTType TreeFindNode(CBTType treeNode,String data){
CBTType ptr;
if(treeNode==null){//输入根节点为空时
return null;
}else{
if(treeNode.data.equals(data)){//根节点等于要查找的数据时
return treeNode;
}else{
if((ptr=TreeFindNode(treeNode.left,data))!=null){//从左子树查找,为什么可以用TreeFindNode表示呢?
return ptr;
}else if((ptr=TreeFindNode(treeNode.right,data))!=null){//从右子树查找
return ptr;
}else{
return null;
}
}
}
}
从左子树查找,为什么可以用TreeFindNode表示呢?因为,左子树也可以按照先序遍历的顺序查找的,所以当然可以用TreeFindNode表示,如果你想左子树用中序遍历查找,那么就不可以用TreeFindNode表示。
上述例子的查找过程:
1 --根(2,4,5)--左(3,6,7)--右
2--根(4)--左(5)--右
4--根
5--根
返回
java构造二叉树,可以通过链表来构造,如下代码:
public class BinTree {
public final static int MAX=40;
BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点
int front;//层次遍历时队首
int rear;//层次遍历时队尾
private Object data; //数据元数
private BinTree left,right; //指向左,右孩子结点的链
public BinTree()
{
}
public BinTree(Object data)
{ //构造有值结点
this.data = data;
left = right = null;
}
public BinTree(Object data,BinTree left,BinTree right)
{ //构造有值结点
this.data = data;
this.left = left;
this.right = right;
}
public String toString()
{
return data.toString();
}
//前序遍历二叉树
public static void preOrder(BinTree parent){
if(parent == null)
return;
System.out.print(parent.data+" ");
preOrder(parent.left);
preOrder(parent.right);
}
//中序遍历二叉树
public void inOrder(BinTree parent){
if(parent == null)
return;
inOrder(parent.left);
System.out.print(parent.data+" ");
inOrder(parent.right);
}
//后序遍历二叉树
public void postOrder(BinTree parent){
if(parent == null)
return;
postOrder(parent.left);
postOrder(parent.right);
System.out.print(parent.data+" ");
}
// 层次遍历二叉树
public void LayerOrder(BinTree parent)
{
elements[0]=parent;
front=0;rear=1;
while(frontrear)
{
try
{
if(elements[front].data!=null)
{
System.out.print(elements[front].data + " ");
if(elements[front].left!=null)
elements[rear++]=elements[front].left;
if(elements[front].right!=null)
elements[rear++]=elements[front].right;
front++;
}
}catch(Exception e){break;}
}
}
//返回树的叶节点个数
public int leaves()
{
if(this == null)
return 0;
if(left == nullright == null)
return 1;
return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());
}
//结果返回树的高度
public int height()
{
int heightOfTree;
if(this == null)
return -1;
int leftHeight = (left == null ? 0 : left.height());
int rightHeight = (right == null ? 0 : right.height());
heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;
return 1 + heightOfTree;
}
//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层
public int level(Object object)
{
int levelInTree;
if(this == null)
return -1;
if(object == data)
return 1;//规定根节点为第一层
int leftLevel = (left == null?-1:left.level(object));
int rightLevel = (right == null?-1:right.level(object));
if(leftLevel0rightLevel0)
return -1;
levelInTree = leftLevelrightLevel?rightLevel:leftLevel;
return 1+levelInTree;
}
//将树中的每个节点的孩子对换位置
public void reflect()
{
if(this == null)
return;
if(left != null)
left.reflect();
if(right != null)
right.reflect();
BinTree temp = left;
left = right;
right = temp;
}
// 将树中的所有节点移走,并输出移走的节点
public void defoliate()
{
if(this == null)
return;
//若本节点是叶节点,则将其移走
if(left==nullright == null)
{
System.out.print(this + " ");
data = null;
return;
}
//移走左子树若其存在
if(left!=null){
left.defoliate();
left = null;
}
//移走本节点,放在中间表示中跟移走...
String innerNode += this + " ";
data = null;
//移走右子树若其存在
if(right!=null){
right.defoliate();
right = null;
}
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
BinTree e = new BinTree("E");
BinTree g = new BinTree("G");
BinTree h = new BinTree("H");
BinTree i = new BinTree("I");
BinTree d = new BinTree("D",null,g);
BinTree f = new BinTree("F",h,i);
BinTree b = new BinTree("B",d,e);
BinTree c = new BinTree("C",f,null);
BinTree tree = new BinTree("A",b,c);
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
System.out.println("--------------------------------------");
tree.reflect();
System.out.println("交换每个节点的孩子节点后......");
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
}
首先我想问为什么要用LinkedList 来建立二叉树呢? LinkedList 是线性表,
树是树形的, 似乎不太合适。
其实也可以用数组完成,而且效率更高.
关键是我觉得你这个输入本身就是一个二叉树啊,
String input = "ABCDE F G";
节点编号从0到8. 层次遍历的话:
对于节点i.
leftChild = input.charAt(2*i+1); //做子树
rightChild = input.charAt(2*i+2);//右子树
如果你要将带有节点信息的树存到LinkedList里面, 先建立一个节点类:
class Node{
public char cValue;
public Node leftChild;
public Node rightChild;
public Node(v){
this.cValue = v;
}
}
然后遍历input,建立各个节点对象.
LinkedList tree = new LinkedList();
for(int i=0;i input.length;i++)
LinkedList.add(new Node(input.charAt(i)));
然后为各个节点设置左右子树:
for(int i=0;iinput.length;i++){
((Node)tree.get(i)).leftChild = (Node)tree.get(2*i+1);
((Node)tree.get(i)).rightChild = (Node)tree.get(2*i+2);
}
这样LinkedList 就存储了整个二叉树. 而第0个元素就是树根,思路大体是这样吧。
我有很多个(假设10万个)数据要保存起来,以后还需要从保存的这些数据中检索是否存在某
个数据,(我想说出二叉树的好处,该怎么说呢?那就是说别人的缺点),假如存在数组中,
那么,碰巧要找的数字位于99999那个地方,那查找的速度将很慢,因为要从第1个依次往
后取,取出来后进行比较。平衡二叉树(构建平衡二叉树需要先排序,我们这里就不作考虑
了)可以很好地解决这个问题,但二叉树的遍历(前序,中序,后序)效率要比数组低很多,
public class Node {
public int value;
public Node left;
public Node right;
public void store(intvalue)
right.value=value;
}
else
{
right.store(value);
}
}
}
public boolean find(intvalue)
{
System.out.println("happen" +this.value);
if(value ==this.value)
{
return true;
}
else if(valuethis.value)
{
if(right ==null)returnfalse;
return right.find(value);
}else
{
if(left ==null)returnfalse;
return left.find(value);
}
}
public void preList()
{
System.out.print(this.value+ ",");
if(left!=null)left.preList();
if(right!=null) right.preList();
}
public void middleList()
{
if(left!=null)left.preList();
System.out.print(this.value+ ",");
if(right!=null)right.preList();
}
public void afterList()
{
if(left!=null)left.preList();
if(right!=null)right.preList();
System.out.print(this.value+ ",");
}
public static voidmain(String [] args)
{
int [] data =new int[20];
for(inti=0;idata.length;i++)
{
data[i] = (int)(Math.random()*100)+ 1;
System.out.print(data[i] +",");
}
System.out.println();
Node root = new Node();
root.value = data[0];
for(inti=1;idata.length;i++)
{
root.store(data[i]);
}
root.find(data[19]);
root.preList();
System.out.println();
root.middleList();
System.out.println();
root.afterList();
}
}
先序非递归算法
【思路】
假设:T是要遍历树的根指针,若T != NULL
对于非递归算法,引入栈模拟递归工作栈,初始时栈为空。
问题:如何用栈来保存信息,使得在先序遍历过左子树后,能利用栈顶信息获取T的右子树的根指针?
方法1:访问T-data后,将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,再先序遍历T的右子树。
方法2:访问T-data后,将T-rchild入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T-rchild,出栈,遍历以该指针为根的子树。
【算法1】
void PreOrder(BiTree T, Status ( *Visit ) (ElemType e))
{ // 基于方法一
InitStack(S);
while ( T!=NULL || !StackEmpty(S)){
while ( T != NULL ){
Visit(T-data) ;
Push(S,T);
T = T-lchild;
}
if( !StackEmpty(S) ){
Pop(S,T);
T = T-rchild;
}
}
}
【算法2】
void PreOrder(BiTree T, Status ( *Visit ) (ElemType e))
{ // 基于方法二
InitStack(S);
while ( T!=NULL || !StackEmpty(S) ){
while ( T != NULL ){
Visit(T-data);
Push(S, T-rchild);
T = T-lchild;
}
if ( !StackEmpty(S) ){
Pop(S,T);
}
}
}
进一步考虑:对于处理流程中的循环体的直到型、当型+直到型的实现。
中序非递归算法
【思路】
T是要遍历树的根指针,中序遍历要求在遍历完左子树后,访问根,再遍历右子树。
问题:如何用栈来保存信息,使得在中序遍历过左子树后,能利用栈顶信息获取T指针?
方法:先将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,访问T-data,再中序遍历T的右子树。
【算法】
void InOrder(BiTree T, Status ( *Visit ) (ElemType e))
{
InitStack(S);
while ( T!=NULL || !StackEmpty(S) ){
while ( T != NULL ){
Push(S,T);
T = T-lchild;
}
if( !StackEmpty(S) ){
Pop(S, T);
Visit(T-data);
T = T-rchild;
}
}
}
进一步考虑:对于处理流程中的循环体的直到型、当型+直到型的实现。
后序非递归算法
【思路】
T是要遍历树的根指针,后序遍历要求在遍历完左右子树后,再访问根。需要判断根结点的左右子树是否均遍历过。
可采用标记法,结点入栈时,配一个标志tag一同入栈(0:遍历左子树前的现场保护,1:遍历右子树前的现场保护)。
首先将T和tag(为0)入栈,遍历左子树;返回后,修改栈顶tag为1,遍历右子树;最后访问根结点。 [Page]
typedef struct stackElement{
Bitree data;
char tag;
}stackElemType;
【算法】
void PostOrder(BiTree T, Status ( *Visit ) (ElemType e))
{
InitStack(S);
while ( T!=NULL || !StackEmpty(S) ){
while ( T != NULL ){
Push(S,T,0);
T = T-lchild;
}
while ( !StackEmpty(S) GetTopTag(S)==1){
Pop(S, T);
Visit(T-data);
}
if ( !StackEmpty(S) ){
SetTopTag(S, 1); // 设置栈顶标记
T = GetTopPointer(S); // 取栈顶保存的指针
T = T-rchild;
}else break;
}
}