在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
鄂温克网站建设公司创新互联,鄂温克网站设计制作,有大型网站制作公司丰富经验。已为鄂温克上千余家提供企业网站建设服务。企业网站搭建\成都外贸网站制作要多少钱,请找那个售后服务好的鄂温克做网站的公司定做!
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错。
我们可以通过改变
来调整拟合效果。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善。
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
Python中利用guiqwt进行曲线数据拟合。
示例程序:
图形界面如下: