php数据分布图 php分布式框架

怎么利用php mysql 在网页上制作直方图

可以配合css样式实现,如果读取的数据为59%。则css样式高度为59%

专注于为中小企业提供成都网站设计、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业思茅免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

我有一组数据想要做正态分布图,怎么做才能出现数轴和置信度?

你可以用EXCEL做,先把数据输入到两列中(横坐标在左列).在插入菜单中选者图表,然后选择xy散点图,选择合适的图样,然后按住鼠标左键拖动鼠标选择整个数据区域,在下一步的标题中x轴处输入"数轴",y轴处输入置信度.如果你的数据符合正态分布,图就是正态分布图.

数值可以在WORD文档里做.选中图形,然后单击右键,有个编辑选项.然后一个一个改就是了。

php的memcached分布式hash算法,如何解决分布不均?crc32这个算法没办法把key值均匀的分布出去

memcached的总结和分布式一致性hash

当前很多大型的web系统为了减轻数据库服务器负载,会采用memchached作为缓存系统以提高响应速度。

目录: ()

memchached简介

hash

取模

一致性hash

虚拟节点

源码解析

参考资料

1. memchached简介

memcached是一个开源的高性能分布式内存对象缓存系统。

其实思想还是比较简单的,实现包括server端(memcached开源项目一般只单指server端)和client端两部分:

server端本质是一个in-memory key-value store,通过在内存中维护一个大的hashmap用来存储小块的任意数据,对外通过统一的简单接口(memcached protocol)来提供操作。

client端是一个library,负责处理memcached protocol的网络通信细节,与memcached server通信,针对各种语言的不同实现分装了易用的API实现了与不同语言平台的集成。

web系统则通过client库来使用memcached进行对象缓存。

2. hash

memcached的分布式主要体现在client端,对于server端,仅仅是部署多个memcached server组成集群,每个server独自维护自己的数据(互相之间没有任何通信),通过daemon监听端口等待client端的请求。

而在client端,通过一致的hash算法,将要存储的数据分布到某个特定的server上进行存储,后续读取查询使用同样的hash算法即可定位。

client端可以采用各种hash算法来定位server:

取模

最简单的hash算法

targetServer = serverList[hash(key) % serverList.size]

直接用key的hash值(计算key的hash值的方法可以自由选择,比如算法CRC32、MD5,甚至本地hash系统,如java的hashcode)模上server总数来定位目标server。这种算法不仅简单,而且具有不错的随机分布特性。

但是问题也很明显,server总数不能轻易变化。因为如果增加/减少memcached server的数量,对原先存储的所有key的后续查询都将定位到别的server上,导致所有的cache都不能被命中而失效。

一致性hash

为了解决这个问题,需要采用一致性hash算法(consistent hash)

相对于取模的算法,一致性hash算法除了计算key的hash值外,还会计算每个server对应的hash值,然后将这些hash值映射到一个有限的值域上(比如0~2^32)。通过寻找hash值大于hash(key)的最小server作为存储该key数据的目标server。如果找不到,则直接把具有最小hash值的server作为目标server。

为了方便理解,可以把这个有限值域理解成一个环,值顺时针递增。

如上图所示,集群中一共有5个memcached server,已通过server的hash值分布到环中。

如果现在有一个写入cache的请求,首先计算x=hash(key),映射到环中,然后从x顺时针查找,把找到的第一个server作为目标server来存储cache,如果超过了2^32仍然找不到,则命中第一个server。比如x的值介于A~B之间,那么命中的server节点应该是B节点

可以看到,通过这种算法,对于同一个key,存储和后续的查询都会定位到同一个memcached server上。

那么它是怎么解决增/删server导致的cache不能命中的问题呢?

假设,现在增加一个server F,如下图

此时,cache不能命中的问题仍然存在,但是只存在于B~F之间的位置(由C变成了F),其他位置(包括F~C)的cache的命中不受影响(删除server的情况类似)。尽管仍然有cache不能命中的存在,但是相对于取模的方式已经大幅减少了不能命中的cache数量。

虚拟节点

但是,这种算法相对于取模方式也有一个缺陷:当server数量很少时,很可能他们在环中的分布不是特别均匀,进而导致cache不能均匀分布到所有的server上。

如图,一共有3台server – 1,2,4。命中4的几率远远高于1和2。

为解决这个问题,需要使用虚拟节点的思想:为每个物理节点(server)在环上分配100~200个点,这样环上的节点较多,就能抑制分布不均匀。

当为cache定位目标server时,如果定位到虚拟节点上,就表示cache真正的存储位置是在该虚拟节点代表的实际物理server上。

另外,如果每个实际server的负载能力不同,可以赋予不同的权重,根据权重分配不同数量的虚拟节点。

// 采用有序map来模拟环

this.consistentBuckets = new TreeMap();

MessageDigest md5 = MD5.get();//用MD5来计算key和server的hash值

// 计算总权重

if ( this.totalWeight for ( int i = 0; i this.weights.length; i++ )

this.totalWeight += ( this.weights[i] == null ) ? 1 : this.weights[i];

} else if ( this.weights == null ) {

this.totalWeight = this.servers.length;

}

// 为每个server分配虚拟节点

for ( int i = 0; i servers.length; i++ ) {

// 计算当前server的权重

int thisWeight = 1;

if ( this.weights != null this.weights[i] != null )

thisWeight = this.weights[i];

// factor用来控制每个server分配的虚拟节点数量

// 权重都相同时,factor=40

// 权重不同时,factor=40*server总数*该server权重所占的百分比

// 总的来说,权重越大,factor越大,可以分配越多的虚拟节点

double factor = Math.floor( ((double)(40 * this.servers.length * thisWeight)) / (double)this.totalWeight );

for ( long j = 0; j factor; j++ ) {

// 每个server有factor个hash值

// 使用server的域名或IP加上编号来计算hash值

// 比如server - "172.45.155.25:11111"就有factor个数据用来生成hash值:

// 172.45.155.25:11111-1, 172.45.155.25:11111-2, ..., 172.45.155.25:11111-factor

byte[] d = md5.digest( ( servers[i] + "-" + j ).getBytes() );

// 每个hash值生成4个虚拟节点

for ( int h = 0 ; h 4; h++ ) {

Long k =

((long)(d[3+h*4]0xFF) 24)

| ((long)(d[2+h*4]0xFF) 16)

| ((long)(d[1+h*4]0xFF) 8 )

| ((long)(d[0+h*4]0xFF));

// 在环上保存节点

consistentBuckets.put( k, servers[i] );

}

}

// 每个server一共分配4*factor个虚拟节点

}

// 采用有序map来模拟环

this.consistentBuckets = new TreeMap();

MessageDigest md5 = MD5.get();//用MD5来计算key和server的hash值

// 计算总权重

if ( this.totalWeight for ( int i = 0; i this.weights.length; i++ )

this.totalWeight += ( this.weights[i] == null ) ? 1 : this.weights[i];

} else if ( this.weights == null ) {

this.totalWeight = this.servers.length;

}

// 为每个server分配虚拟节点

for ( int i = 0; i servers.length; i++ ) {

// 计算当前server的权重

int thisWeight = 1;

if ( this.weights != null this.weights[i] != null )

thisWeight = this.weights[i];

// factor用来控制每个server分配的虚拟节点数量

// 权重都相同时,factor=40

// 权重不同时,factor=40*server总数*该server权重所占的百分比

// 总的来说,权重越大,factor越大,可以分配越多的虚拟节点

double factor = Math.floor( ((double)(40 * this.servers.length * thisWeight)) / (double)this.totalWeight );

for ( long j = 0; j factor; j++ ) {

// 每个server有factor个hash值

// 使用server的域名或IP加上编号来计算hash值

// 比如server - "172.45.155.25:11111"就有factor个数据用来生成hash值:

// 172.45.155.25:11111-1, 172.45.155.25:11111-2, ..., 172.45.155.25:11111-factor

byte[] d = md5.digest( ( servers[i] + "-" + j ).getBytes() );

// 每个hash值生成4个虚拟节点

for ( int h = 0 ; h 4; h++ ) {

Long k =

((long)(d[3+h*4]0xFF) 24)

| ((long)(d[2+h*4]0xFF) 16)

| ((long)(d[1+h*4]0xFF) 8 )

| ((long)(d[0+h*4]0xFF));

// 在环上保存节点

consistentBuckets.put( k, servers[i] );

}

}

// 每个server一共分配4*factor个虚拟节点

}

// 用MD5来计算key的hash值

MessageDigest md5 = MD5.get();

md5.reset();

md5.update( key.getBytes() );

byte[] bKey = md5.digest();

// 取MD5值的低32位作为key的hash值

long hv = ((long)(bKey[3]0xFF) 24) | ((long)(bKey[2]0xFF) 16) | ((long)(bKey[1]0xFF) 8 ) | (long)(bKey[0]0xFF);

// hv的tailMap的第一个虚拟节点对应的即是目标server

SortedMap tmap = this.consistentBuckets.tailMap( hv );

return ( tmap.isEmpty() ) ? this.consistentBuckets.firstKey() : tmap.firstKey();

更多问题到问题求助专区()

请问php有办法识别一张图片色块分布吗?比如找出最适合添加文字的地方

理论上肯定是可以的。不过这应该是一个很高深的东西。所以,我只能给你我很粗浅的方法:

一:写个函数,这个函数的主要功能是找出一张图片上的主要颜色(代码在最后面)

二:把一张图片有GD库分成9份(3*3)或更多份,然后用第一个函数来取得每一份小图的主要颜色。

三:比对这几份小图的颜色,看哪一份的颜色是你需要的。

如果你原意,你也可以切很多份,比如10000份(100*100),然后计算这10000个颜色的中你需要的颜色的分布,找出你需要的区域。

$i = imagecreatefromjpeg("image.jpg");

for ($x=0;$ximagesx($i);$x++) {

for ($y=0;$yimagesy($i);$y++) {

$rgb = imagecolorat($i,$x,$y);

$r = ($rgb 16) 0xFF;

$g = ($rgb 0xFF;

$b = $rgb 0xFF;

$rTotal += $r;

$gTotal += $g;

$bTotal += $b;

$total++;

}

}

$rAverage = round($rTotal/$total);

$gAverage = round($gTotal/$total);

$bAverage = round($bTotal/$total);

php-红黑树、散列表、跳表理解入门

就是把链表的结构稍加改造,这种数据结构叫

为了提升链表的查询效率,怎么让链表支持类似‘数组’那样的‘二分’算法呢

跳表是一个各方面性能都比较优秀的 动态数据结构 ,可以支持快速地插入、删除、查找操作,写起来也不复杂,甚至可以替代红黑树。

Redis 中的有序集合(Sorted Set)就是用跳表来实现的。

那 Redis 为什么会选择用跳表(和散列表)来实现有序集合呢? 为什么不用红黑树呢?这个问题一会在回答,先看看跳表的数据结构

其实概念很简单,就是在链表上加上了

当我们在不停插入数据,如果我们不更新索引,可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。

红黑树、AVL 树这样平衡二叉树,是通过左右旋的方式保持左右子树的大小平衡,而跳表是通过 随机函数 来维护平衡性。

插入、删除、查找以及迭代输出有序序列这几个操作,红黑树也可以完成,时间复杂度跟跳表是一样的。但是, 按照区间来查找数据这个操作,红黑树的效率没有跳表高。

对于按照区间查找数据这个操作,跳表可以做到 O(logn) 的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了。

Redis 键值构建一个散列表,这样按照 key 来删除、查找一个成员对象的时间复杂度就变成了 O(1)。同时,借助跳表结构,其他操作也非常高效。

散列表的英文叫“Hash Table”,我们平时也叫它“哈希表”或者“Hash 表”

散列技术是在记录的存储位置和它的关键字之间建立一个确定的对应关系 f,使得每个关键字 key 对应一个存储位置 f(key)。查找时根据这个对应关系匠互给定的 key 的映射 f(key)

这种关系 f 称为散列函数(又称哈希函数)。散列技术将记录存储在一块连续的存储空间中,这块连续存储空间称为散列表或哈希表。那么关键字对应的记录存储位置称为散列地址。

散列函数的构造方法特点就是:计算简单、散列地址分布均匀

大家一定听说过 hash 碰撞。就是2个不同的 key 对应着不同的 f 关系。但这是几乎不可能的,即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。而且,因为数组的存储空间有限,也会加大散列冲突的概率。

我们只能通过其它途径来寻找方法。我们常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。

所谓的开放寻址法就是一但发生了冲突,就去寻找下一个空的散地址,只要散列表足够大,空的散列表地址总能找到,并将记录存入。

链地址法又称链表法,其实当发生冲突时存入链表,如下图很容易就可以看明白。此时,已经不存在什么冲突地址的问题,无论有多少冲突,都只是在当前位置给单链表增加结点的问题。

这种不常见,就是把冲突的单独找个地方。

顾名思义,红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑

平衡二叉树 是一种二叉排序树,其中每一个节点的左子树和右子树的高度不能大于 1

红黑树是一种平衡二叉查找树。它是为了解决普通二叉查找树在数据更新的过程中,复杂度退化的问题而产生的。红黑树的高度近似 log2n,所以它是近似平衡,插入、删除、查找操作的时间复杂度都是 O(logn)。

平衡二叉查找树其实有很多,比如,Splay Tree(伸展树)、Treap(树堆)等,但是我们提到平衡二叉查找树,听到的基本都是红黑树。

红黑树在众多里面,表现的最为平衡。

“近似平衡”就等价为性能不会退化得太严重。

一棵红黑树还需要满足这样几个要求:

看到这里你会很头大,什么黑的红的,完全不懂。赋上连接,有时间在看

散列表 :插入删除查找都是O(1), 是最常用的,但其缺点是不能顺序遍历(存入的数据是无顺序的)以及扩容缩容的性能损耗。适用于那些不需要顺序遍历,数据更新不那么频繁的。

散列表总和链表、跳表一起出现组合使用。

跳表 :插入删除查找都是O(logn), 并且能顺序遍历。缺点是空间复杂度O(n)。适用于不那么在意内存空间的,其顺序遍历和区间查找非常方便。

跳表还可以和散列表组合让删除、查找一个成员对象操作变为O(1),也就是说利用了散列表查找速度,跳表的顺序结构

红黑树 :插入删除查找都是O(logn), 中序遍历即是顺序遍历,稳定。缺点是难以实现,去查找不方便。其实跳表更佳,但红黑树已经用于很多地方了。


本文标题:php数据分布图 php分布式框架
新闻来源:http://bzwzjz.com/article/dodcosh.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 梓潼网站设计 网站制作 成都网站制作 成都网站设计 成都网站设计 网站制作 企业网站设计 营销型网站建设 专业网站设计 成都网站建设 盐亭网站设计 成都网站建设公司 专业网站设计 企业网站设计 品牌网站建设 达州网站设计 成都网站设计 成都网站建设公司 成都企业网站设计 网站建设方案 成都网站制作 重庆外贸网站建设