【C++】并查集-创新互联

并查集这个数据结构本身并不难,其主要是提供一个思路,方便我们编写图的代码,和一些OJ题

创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、成都网站制作、淮北网络推广、微信小程序开发、淮北网络营销、淮北企业策划、淮北品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们大的嘉奖;创新互联公司为所有大学生创业者提供淮北建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com文章目录
  • 1.什么是并查集?
  • 2.思路
    • 2.1 合并集合
    • 2.2 压缩路径
  • 3.代码
  • 4.OJ题
    • 4.1 剑指 Offer II 116. 省份数量
    • 4.2 等式方程的可满足性

1.什么是并查集?

并查集是多个独立集合的合集,用于表示数据之间的关系。

比较生动的例子,就是我们生活中的朋友圈(不是wx的那个啊)

  • 张三和李四是好朋友,那么他们就构成了一个集合A
  • 王舞和王陆是好朋友,那么他们也构成了一个集合B
  • 此时,王舞突然认识了李四,这时候,就可以把A和B合并成一个集合

推而广之,一个并查集中可以有多个这样的集合,多个朋友圈。

  • 并查集中的每一个集合是用多叉树来表示的
2.思路

并查集的思路并不难,给定一个数组的大小(需要在另外的地方管理编号)创建一个并查集

下标即为数据的编号

  • 设定元素的初始值都是-1
  • 如果下标1和3为一个集和,那就把3的元素(初始值-1)加到1处,即1的元素为-2;再把3的元素设置为1的下标,即3的元素为1
  • 依此类推,最终只要下标所对应元素不为负数,那么这个下标就是一个集和的成员
  • 如果为负数,那么就是一个集合的根,且元素为这个集和中成员的个数(绝对值)

如图所示,下标678所对应元素为0,代表它们属于以下标0为根的一个集合。而下标0处的元素为-4,代表这个集合里面有4个元素

image-20221201150318228

2.1 合并集合

如果我们需要合并一个集合,以上图中的0集合和1集合为例。我们只需要将1集合的元素-3加到0集合上,再把1集合的元素改成0即可

此时的树就会是这样的👇

image-20221201151418278

2.2 压缩路径

当节点很多,集合可能会出现路径长度过大的情况。这时候我们就需要进行路径的压缩

其方法很简单。遍历整个并查集,将同一集合的子节点改成相同的父亲即可

image-20221201152737608

这样在向上找集合的根时,无须跳转多次,一次就能找到。

但由于并查集的访问是依靠数组下标实现的随机访问,时间复杂度为O(1),只有数据样本量极大的时候,这么做才能有效果


3.代码

相比于其他数据结构复杂的实现,并查集的实现就简单多了。主要的函数只有几个,可以通过封装vector来实现

class UnionFindSet {public:
	UnionFindSet(const int sz)
		:_set(sz,-1)//调用vector构造函数,初始化sz个-1
	{}

	void Union(int x, int y)//设置x和y为一个集合
	{int r1 = FindRoot(x);
		int r2 = FindRoot(y);

		if (r1 != r2)//不在一个集和中
		{	_set[r1] += _set[r2];
			_set[r2] = r1;
		}
	}

	int FindRoot(int n)//找这个集合的根
	{while (_set[n] >= 0)
		{	n = _set[n];
		}
		return n;//负数的时候为根
	}

	bool isUnion(int x,int y)//判断是否在一个集合中
	{return FindRoot(x) == FindRoot(y);
	}

	int UnionSZ()//返回有几个集合
	{int count = 0;
		for (int i = 0; i< _set.size(); i++)
		{	if (_set[i]< 0)
			{		count++;
			}
		}
		return count;
	}
private:
	vector_set;//用来存放对应关系
};

这里没有写压缩路径的代码,其实也就是一个遍历搞定的事😂

4.OJ题 4.1 剑指 Offer II 116. 省份数量

剑指 Offer II 116. 省份数量

image-20221201155824404

有了并查集,这道题就非常简单。最重要的是思路。我们无须现场造一个轮子,只需要写好找根函数,用一个数组就能实现一个简单的并查集

class Solution {public:
    int FindRoot(const vector& v,int n)
    {int prev = n;//初始下标
        while(v[prev]>=0)//它的父亲下标
        {prev=v[prev];//如果不为负数,那就还是需要往前找
        }
        return prev;
    }

    int findCircleNum(vector>& isConnected) 
    {vectorv(isConnected.size(),-1);
        for(int i=0;ifor(int j=0;jif(isConnected[i][j]==1)//为1代表是一个集合中的元素
                {int root1 = FindRoot(v,i);
                    int root2 = FindRoot(v,j);
                    if(root1!=root2)
                    {v[root1] += v[root2];
                        v[root2] = root1;
                    }
                }
            }
        }

        int count = 0;
        for(int i=0;iif(v[i]<0)
            {count++;
            }
        }

        return count;
    }
};

image-20221201160014014

4.2 等式方程的可满足性

990.等式方程的可满足性

image-20221201200826342

这道题和上面那一道差不多,只不过把省份换成了字母之间的关系

class Solution {public:
    int FindRoot(const vector& v,int n)
    {int prev = n;//初始下标
        while(v[prev]>=0)//它的父亲下标
        {prev=v[prev];//如果不为负数,那就还是需要往前找
        }
        return prev;
    }

    bool equationsPossible(vector& equations) {vectorv(26,-1);//因为题目给的都是小写字母,直接建立26个小写字母的映射表
        for(int i=0;iint root1 = FindRoot(v,equations[i][0]-'a');//第一个字母
            int root2 = FindRoot(v,equations[i][3]-'a');//第二个字母
            if(equations[i][1]=='=')//代表等于
            {if(root1!=root2)
                {//设置为一个集合中的元素
                    v[root1] += v[root2];
                    v[root2] = root1;
                }
            }
            else//不等于
            {if(root1==root2)
                {//如果不等于的同时,根还相同
                    //说明是同一个集合,不符合题意
                    return false;
                }
            }
        }

        //还需要遍历第二遍,避免漏网之鱼
        for(int i=0;iint root1 = FindRoot(v,equations[i][0]-'a');//第一个字母
            int root2 = FindRoot(v,equations[i][3]-'a');//第二个字母
            if(equations[i][1]=='!')//不等于
            {if(root1==root2)
                {//如果不等于的同时,根还相同
                    //说明是同一个集合,不符合题意
                    return false;
                }
            }
        }

        return true;
    }
};

image-20221201200909339

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧


当前名称:【C++】并查集-创新互联
转载源于:http://bzwzjz.com/article/dejhei.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 网站制作 成都网站设计公司 广安网站设计 成都响应式网站建设 重庆电商网站建设 LED网站设计方案 成都商城网站制作 高端网站建设 重庆网站建设 成都网站设计制作公司 营销网站建设 宜宾网站设计 成都网站设计 盐亭网站设计 成都网站制作 网站制作 重庆网站建设 成都网站建设 专业网站设计 成都网站建设 泸州网站建设 手机网站制作