利用Opencv中Houghline方法实现直线检测-创新互联

利用Opencv中的Houghline方法进行直线检测—python语言

成都创新互联服务项目包括鼓楼网站建设、鼓楼网站制作、鼓楼网页制作以及鼓楼网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,鼓楼网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到鼓楼省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

这是给Python部落翻译的文章,请在这里看原文。

在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲。

下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特点图像的边缘检测是可取的。边缘检测方法请参考这篇文章–边缘检测。

Houghline算法基础

直线可以表示为y=mx+c,或者以极坐标形式表示为r=xcosθ+ysinθ,其中r是原点到直线的垂直距离,θ是水平轴顺时针方向到垂直线的夹角(这个方向取决于坐标的形式,在OpenCV就是采用这种极坐标形式)。

利用Opencv中Houghline方法实现直线检测

因此任意的曲线都可以用两个参数(r,θ)表示。

HoughLine算法原理:

  • 首先建立一个二维的数组或者累加器(用来保存这两个参数),并初始化为零;
  • 这个二维数组的行代表不同的r,而列代表角度θ;
  • 数组的大小取决于算法的精度。假设所需角度的精度精确到1∘,那么就需要180列(直线的大角度是180)。
  • 对于r,大的可能距离是图像的对角长度,因此若需要一个像素的精度,那么需要把行数设为图像对角线的长度。

例子:

假设一幅100x100的图像,在图像中间有一条水平直线。设直线的第一个点的坐标为(x,y),在直线方程中,令参数θ=0,12,⋯,180,观查参数r变化。对每一个参数对(r,θ),在累加器中将(r,θ)对应的单元格中的值递增1,比如现在在累加器中,某个单元(50,90)的值等于1,其它的值也如此。

对于直线上的第二个点,重复上述操作。将得到的参数对(r,θ)的对应值继续递增,然后(50,90)对应的值等于2。实现上我们是对参数对(r,θ)进行投票,对直线上的每一个点重复上述操作,对每一个点,单元格(50,90)对应的值会递增,或者说投票给参数对(50,90),而会或者不会投票给其它参数对。以这种方式,最后单元格(50,90)的值将会是大的值。然后搜索累加器的大值,将会找到参数对(50,90)。也就是说,在图像中找到了到原点距离为50,角度为90的一条直线。

利用Opencv中Houghline方法实现直线检测

上述算法的过程被封装成OpenCV函数cv2.HoughLines(),函数返回(r,θ)的一个数组,其中r的单位为像素,θ的单位为弧度。

# Python program to illustrate HoughLine
# method for line detection
import cv2
import numpy as np

# Reading the required image in 
# which operations are to be done. 
# Make sure that the image is in the same 
# directory in which this python program is
img = cv2.imread('xyz.jpg')

# Convert the img to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# Apply edge detection method on the image
edges = cv2.Canny(gray,50,150,apertureSize = 3)

# This returns an array of r and theta values
lines = cv2.HoughLines(edges,1,np.pi/180, 200)

# The below for loop runs till r and theta values 
# are in the range of the 2d array
for r,theta in lines[0]:

 # Stores the value of cos(theta) in a
 a = np.cos(theta)

 # Stores the value of sin(theta) in b
 b = np.sin(theta)

 # x0 stores the value rcos(theta)
 x0 = a*r

 # y0 stores the value rsin(theta)
 y0 = b*r

 # x1 stores the rounded off value of (rcos(theta)-1000sin(theta))
 x1 = int(x0 + 1000*(-b))

 # y1 stores the rounded off value of (rsin(theta)+1000cos(theta))
 y1 = int(y0 + 1000*(a))

 # x2 stores the rounded off value of (rcos(theta)+1000sin(theta))
 x2 = int(x0 - 1000*(-b))

 # y2 stores the rounded off value of (rsin(theta)-1000cos(theta))
 y2 = int(y0 - 1000*(a))

 # cv2.line draws a line in img from the point(x1,y1) to (x2,y2).
 # (0,0,255) denotes the colour of the line to be 
 #drawn. In this case, it is red. 
 cv2.line(img,(x1,y1), (x2,y2), (0,0,255),2)

# All the changes made in the input image are finally
# written on a new image houghlines.jpg
cv2.imwrite('houghlines3.jpg', img)

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站标题:利用Opencv中Houghline方法实现直线检测-创新互联
标题链接:http://bzwzjz.com/article/dceppo.html

其他资讯

Copyright © 2007-2020 广东宝晨空调科技有限公司 All Rights Reserved 粤ICP备2022107769号
友情链接: 成都网站设计 LED网站设计方案 成都网站设计 企业网站建设公司 高端网站设计推广 成都网站制作 成都网站制作 上市集团网站建设 成都网站建设 专业网站设计 成都网站建设公司 成都网站建设 成都网站设计 网站制作 成都定制网站建设 成都网站建设 成都网站建设 营销网站建设 盐亭网站设计 H5网站制作 响应式网站设计方案 成都网站设计